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Abstract—The fundamental and natural connection between  Space time codes are coding schemes designed for MIMO
the infinite constellation (IC) dimension and the best divesity systems. There has been an extensive work in this field
order it can achieve is investigated in this paper. In the firs [4],[5] [6] and references therein. Some of these workseares

part of this work we develop an upper bound on the diversity S . . L
order of IC’s for any dimension and any number of transmit and schemes that maximize the diversity order, others maximize

receive antennas. By choosing the right dimensions, we prevn the multiplexing gain, and there are also works aimed at
the second part of this work that IC’s in general and latticesin ~ achieving the optimal DMT. In[[7], El Gamal et al presented
particular can achieve the optimal diversity-multiplexing tradeoff  |attice space time (LAST) codes. These space time codes are
of finite constellations. This work gives a framework for deggning ¢ psets of an infinite lattice. where the lattice dimendigna
lattices for multiple-antenna channels using lattice deading. ’ .

equals to the number of degrees of freedom available by the

I. INTRODUCTION channel, i.emin(M, N). By using an ensemble of nested lat-

The use of multiple antennas in wireless communicatidi¢es, common randomness, generalized minimum Euclidean
has certain inherent advantages. On one hand, using neultiigittice decoding and modulo lattice operation (that in dater
antennas in fading channels allows to increase the trarsmitsense takes into account the finite code book), they shoveed th
signal reliability, i.e. diversity. For instance, diveysican be LAST codes can achieve the optimal DMT.
attained by transmitting the same information on different The authors in[[7] also derived a lower bound on the
paths between transmitting-receiving antenna pairs witth i diversity order, for the cas&/ > M, for LAST codes shaped
Rayleigh fading distribution. The number of independerthpa into a sphere with regular lattice decoding, i.e. decodivey o
used is the diversity order of the transmitted scheme. Qe infinite lattice without taking into consideration thaite
the other hand, the use of multiple antennas increases @®glebook. For sufficiently large block length they showeat th
number of degrees of freedom available by the channel. dfy) > (N — M + 1)(M — r) wherer is the multiplexing
[1],[2] the ergodic channel capacity was obtained for nplgti  gain and the lattice dimension id. Taherzadeh and Khandani
input multiple-output (MIMO) systems witth/ transmit and Sshowed in[[8] that this is also an upper bound on the diversity
N receive antennas, where the paths have i.i.d RayleigFfler of any LAST code shaped into a sphere and decoded
fading distribution. It was shown that for large signal tavith regular lattice decoding. These results show that LAST
noise ratios §NR), the capacity behaves aS(SNR) ~ codes together with regular lattice decoding are suboptima
min(M, N)log(SNR). The multiplexing gain is the numbercompared to the optimal DMT of power constrained constel-
of degrees of freedom utilized by the transmitted scheme. lations.

For the quasi-static Rayleigh flat-fading channel, Zherdy an Infinite constellations (IC’s) are structures in the Eueld
Tse [3] characterized the dependence between the diversipace that have no power constraint.[In [9], Poltyrev arealyz
order and the multiplexing gain, by deriving the optimalhe performance of IC’s over the additive white Gaussias@oi
tradeoff between diversity and multiplexing, i.e. for eackAWGN) channel. In this work we first extend the definitions
multiplexing gain found the maximal diversity order. Theyf diversity order and multiplexing gain to the case where
showed that the optimal diversity-multiplexing traded@i\T) there is no power constraint. We also introduce a new term:
can be attained by ensemble of i.i.d Gaussian codes, giibg average number of dimensions per channel use, which is
that the block length is greater or equal A+ M — 1. For essentially the IC dimension divided by the number of channe
this case, the tradeoff curve takes the form of the piecewigges. Then we extend the methods used’In [9] in order to
linear function that connects the point&v — I)(M — 1), derive an upper bound on the diversity of any IC with certain
1=0,1,...,min(M, N). average number of dimensions per channel use, as a function

of the multiplexing gain. It turns out that for a given number

The material in this paper was presented in part at the IEE&national ; ; ; g ; ;
Symposium in Information Theory (ISIT) 2011, of dimensions per channel use, the diversity is a straiglet i
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for any M and N, and also for lattices and regular latticechannel knowledge at the transmitter. The channel model is
decoding. We also find the average number of dimensions erfollows:
channel use for which the upper bounds coincide with the

optimal DMT of finite constellations. Finally, we show thatf

the aforementioned average number of dimensions per changgeres = {z,,...,z,} € S € CM7 belongs to the infinite
use, together with sufficient amount of channel uses, thefgnstellation with densityy, = limsup,_, . 24522 (where

2-1

exist sequences of lattices that attain different segmaritse 2% is the volume ofcubey(a)), n, ~ CN(0, 9= In) where
in the DMT of [3] there exists a lattice sequence of certaihatrix, andy € CN. H is the fading matrix withV rows
dimension that achieves it with regular lattice decoding.  and A/ columns wheréy; ; ~ CN(0,1),1<i< N,1<j <

This work gives a framework for designing lattices fon, and,—% is a scalar that multiplies each elementgf
multiple-antenna channels using regular lattice decading \herep plays the role of averagéN R in the receive antenna
also shows the fundamental and natural connection betwggPpower constrained constellations that satisfig{||z)|2} <
the IC dimension and its optimal diversity order. For ins@&n 2M

. . 2me

it is shown that for the casé/ = N = 2, the maximal “"gy qefining H,, as anNT x MT block diagonal matrix,
diversity order of4 can be achieved (with regular lattice,nere each block on the diagonal equéls n.. — p~* -
decoding) by a lattice that has at mdstaverage number of .ng) € CNT andy € CNT we can rewrite the

gt:H-gt—i—p_%Qt t=1,...,T (2)

dimensions per channel use. On the other hand the Alamo(gﬁ%nm model in(2) as x

scheme [[10], that also has maximal diversity order 4of

utilizes only a single dimension per channel use in this pet u Yoo = Hex T+ Ny )

Hence, there is still a room for improvement%)fdimensions In the sequel we us to denotemin(M, N). We define as

pe_:_;]:hannle_l usef, Vr\]lh”e atta|r_1|ng ﬂfJ"”dNerSI'ty' Gh Il b aﬁz 1 < < L the real valued, non—neg7ative singular values
e outline of the paper is as follows. In sect asiSe 11 We assume/dz > - > VA, > 0. Our analysis is

definitions for the fading channel and IC’s are g|ven..Seent|oOIOne for large values of (large VNR at the transmitter). We
[T presents a lower bound on the average decoding enar. thatf (p)g() whenlim _J0) < _ 90 and also
probability of IC for any channel realization, and an upper p)=9\p P70 In(p) —  In(p)’

bound on the diversity order. An upper bound on the err@€fine<, = in a similar manner by substituting with >, =
probability for each channel realization, a transmissitiresne  '€SPectively.

that attains the best diversity order and some averaging ar% We now turn to the IC definitions in the transmitter. We
ments regarding the achievable diversity order of IC’s,are d€fine the average number of dimensions per channel use as

presented on sectidilV. the IC dimension divided by the number of channel uses. We
denote the average number of dimensions per channel use by
Il. BASIC DEFINITIONS K. Let us consider a KT-complex dimensional sequence of

IC's Skr(p), whereK < L, andT is the number of channel
uses. First we defing,. = p"! as the density ob5x7(p) in
the transmitter. The IC multiplexing gain is defined as

We refer to the countable s& = {s1,s2,...} In C" as
infinite constellation (IC). Letube;(a) C C™ be a (probably
rotated) /-complex dimensional cubel (< n) with edge
of length a centered around zero. An IG; is I-complex o1 o1 T
dimensional if there exists rotatéadtomplex dimensional cube Gr) = plggo T log, (er 1) = plggo T log, (" +1).
cube;(a) such thatS; C lim,_,+ cube;(a) and | is minimal. (4)
M(S),a) = |Si (N cube;(a)| is the number of points of the IC Noteé thatM G(r) = max(0,r). For0 <r < K, r = MG(r)

Sy insidecube; (a). In [9], the n-complex dimensional IC den-has the meaning of multiplexing gain. Roughly speaking,
sity for the AWGN channel was defined as the upper limit (tHé&r = p"" gives us the number of points dfxr(p) within
limit supremum) of the ratioyg = limsup,_,__ Méia) and the KT-complex dimensional regiotubexr(1). In order to

1

-1 get the multiplexing gain, we normalizing the exponent & th
the volume to noise ratio (VNR) was given g = 7<—.  number of points withincubex (1), #T, by the number of

The Voronoi region of a point € S;, denoted ad/(z), is channel uses 7. Note that the IC multiplexing gain;, can
the set of points idim,_, cube;(a) closer toz than to any be directly translated to finite constellation multiplexigain
other point in the IC. The effective radius of the painE S;, r by considering the IC points within a shaping region. The
denoted as.g (), is the radius of thé-complex dimensional VNR in the transmitter is

ball that has the same volume as the Voronoi regionyiggx) ke
satisfies — Ju =yl % 5
V()| = mlr2l(x) (1) For = Sreo?  ° ©)
Il +1) wheres? = 2 is each dimension noise variance. Now we

2
We consider a quasi static flat-fading channel with can understand the role of the multiplexing gain for IC's.

transmit andNV receive antennas. We assume for this MIMO'he AWGN variance decreases as', where the IC density
channel perfect channel knowledge at the receiver and increases ag””. Whenr = 0 we get constant IC density



as a function ofp, where the noise variance decreases, i.and
we get the best error exponent. In this case the number of fre < pl‘%(T’Lzm‘B?01 ar—itfor-p)
words within cube (1) remains constant as a function af
On the other hand, when= K, we get VNRy,, = 1, and Theorem 1. For any KT-complex dimensional IC Sk (p)
from [9] we know that it inflicts average error probabilityath With transmitter density v, = p"" and channel realization
is bounded away from zero. In this case, the increase in tie= (a1, .., o), we have the following lower bound on the
number of IC words withircube (1) is at maximal rate. ~ average decoding error probability for 0 < r < K

Now we turn to the IC definitions in the receiver. First
we define the sefd., - cubexr(a) as the multiplication of
each point incubexr(a) with the matrix H.,.. In a similar
mannerS}(T = H.,-Skr. The setH., - cubexr(a) is almost
surely KT-complex dimensional (wher& < L) and in this
case M(Skr,a) = |Skr Neubexr(a)l = [Sxr N(Heo - iy . .
cubegr(a))|. We define the receiver density as Proof: We divide the proof into 2 parts. In the first part

we prove the result for lattices, that constitute a symroetri
]\/[(SKT, a)

Yre = lim sup structure for which the Voronoi regions of different lagtic
a—oo VOl(Heg.cubegr(a)) points are identical. In the second part we prove the result f

i.e., the upper limit of the ratio of the number of IC wordd4C's with receiver densityy,. and no restrictions other than
in H.,.cubegr(a), and the volume ofi.,.cubexr(a). The thaton the IC structure. As the second part proof is somewhat
volume of the setH., - cubexr(a) is smaller thana?5” . more involved, we present it on appenflik A.
AL AL 5N T, assumings = B+3whereB € Nand  We begin by proving the result for lattices. Lattices con-
0 < 8 <1, i.e. the volume is smaller than the multiplicatiorstitute a discrete subgroup of the Euclidean space, with the
of the B + 1 strongest singular values, raised to the power @fdinary vector addition operation. Consideri&-complex
the maximal amount of channel uses each can take placedimensional latticeSy(p), in the receiver with density,..
Hence we get The lattice points have identical Voronoi regions up to a

Pe(H, p) > & (Z(T)e—um-mmwmfl)lnmm)

where A(KT) = e - (KT + 1)®r and C(KT) =
KT8 p(KT41) KT

2T(KT)

T\ — _ — translate. Hence, the volume of each Voronoi region equals
e > pTALT L )‘L:—FBH '/\Lfg (6) 1 : |
and the receiver VNR is |V (z)| = ’Y_ Vo e S;(T(P)-
. L 1 8 e
fire < p' K CNE LN gL AR g (7)  According to the definition of the effective radiusid (1), get

that reg () = et (Yre), V& € Sy (p). Note that in lattices
the maximume-likelihood (ML) decoding error probability is
identical for all lattice points, i.e. the average and maaim
error probabilities are identical. It has been proveriin [21]
that the error probability of any lattice point in the reagiv
_ Zz’eS}{T (\(Hew-cuberer(a)) €@ H, p) fulfils

Pe(H, p) = limsup —= , 7 :
6( 7p) lt?i)b;p J\/[(SKTaa) PesKT > Pr(|‘ﬂex|| Z Teff (Vrc))

Note that for N > M and K = M we gety,. = ot
1Y, AT andpee = pt~ 37 -T], A} . The average decoding
error probability over the IC points o k1 (p), for a certain
channel realizatiorf, is defined as

, . . , () where Pegy is the ML decoding error probability of any
wherePe(z , H, p) is the error probability of: . The average | yice poinIf,Tan@ex is the effective noise in th& T'-complex

decoding error probability of 1(p) over all channel realiza- 4 ansional hyperplane wher§,.-(p) resides. We find an
tions is Pe(p) = Ex{Pe(H, p)}. Hence theliversity order explicit expression to the lower bound

equals o y
d =~ lim log, (Pe(p)) ©) Pr (el 2 7o) > Pr (enl] = resr(5)) >

p—00 2

T2
[1l. UPPERBOUND ON THE DIVERSITY ORDER /Tﬁff+02 PKT—1c=502 p2KT—2,=5%
[S)

dr > .
In this section we derive an upper bound on the diversity or-/,2~ o2KT2KTD(KT) " = o2KT-22KTT(KT)\/e
der of any IC with average number of dimensions per channel (10)
use K and any value ofl’, M and N. We begin by deriving o 9 T(KT+41)\ L.
a lower bound on the average decoding error probability BY 8sSigningriy = (== =) =T we get
Skr(p) for each channel realization. As inl[3] and [7], we _ 1

KT ~ KT
also define\; = p=*/, 1 < i < L. For very largep, the Pey > C(KT). e Ssr ARTHET-DIn(37)
Wishart distribution is of the formp= 2= (IN=M[+2i—1a; KT
and we can assume < ap < --- < a;. By assigning in 4 pv assianing... — 2<"" we get
@), (@) respectively, we can write y assigningirc = 5= We g

C(KT
Ve > pT(r-i-E?:Bl arp—i+par—g) PeS;(T > % . e—umA(KT)-f-(KT—l)ln(pm). (11)



Note that in [[ID) we lower bounded the error probability withvherea > 0 signifies the fact thaty; > --- > ap > 0. By

e (%52 ) instead ofreq (vr.), and also in[(I1) we multiplied defining A = {o Zf;ol ap—; + Bap_p < K —r;a > 0}

by 1, in order to be consistent with the general lower bourghd A = {o| Zf’;’ol arp—i+pPa,—g > K—r;a >0} we can

for IC’s. For lattices we havée(H, p) = PeS;(T. Hence this split (I2) into 2 terms

concludes the proof. We give the proof for general IC’s in . _

appendiA. [ | Pe(p)>/ PFB(p,a) - p~ Zima (IN=MIF2i=Dei g
Next, we would like to use this lower bound to average acA

over the channel realizations and get an upper bound on the +/ PLB(p q) - p~ Tica(IN=M|+2i-Dai gy, (13)

diversity order. acA

Theorem 2. The diversity order of any K'T-complex dimen- Hence, we get

sional sequence of IC's Skr(p), with K average number of E(p)>/ PLB(p,a) - p~ L (IN=M|+2i-D)aq g, (14)
aei e = —

dimensions per channel use, is upper bounded by acA
dgr(r) < dj(r)=M-N(1 — L) In a similar manner td |3]/[7], for very large, we approx-
imate the average by finding the most dominant exponential
for 0 < K < 257, and term in the integral, i.e. We would like to find the minimal
K . value of

dgr(r) < di(r) = (M = 1)(N — l)ﬁ(l - E) plggo —log, (PXB(p,a) - p (N =M 2Ty

(M—141)(N—1+1) _ (M—-l)(N-1) — — .
for Tty t1-1 <K < xrrror Hlad g ihe casex € A. Fora € A, we get thatP/B(p,a) is

t=1,...,L—1.Inal of thesecases 0 < r < K. bounded away from O for any value @f Hence, in order

Proof: For any IC with VNR g, assigningu’ > pp. O find the most dominant error event we would like to find
) ! re

. L . .
in the lower bound from Theore 1 also gives a lower bourBing >_;=; (I[N — M| + 2i — 1)a; given thata € A. The
on the error probability minimal value is achieved for the case Wh§r:q’9;0 ar—; +
Bar_g = K —r anda > 0. Hence, for anyK < L we state
that

Pe(H, p) > & (Z(T)efuic-A<KT>+<KT71>lnm;)
. . - L
It.results frgm the fact that inflating the IC |r?t_o an IC dger(r) SminZ(lN—MH?i— ey, 0<r<K
with VNR p,.. must decrease the error probability, where a =
D) = ART)HKT-1)In(ke) js @ lower bound on the bt (15)
error probability of any IC with VNRy... Hence, for the Wherey ,_ ar—i+far_p =K —randa; >--->ap >
caseu,. < 1 we can lower bound the error probability by)- Basically this optimization problem is a linear programgi

assigningl in the lower bound and ge? &™)~ AKT) je, problem whose solution is as follows. For< K < N
for 4. < 1 the average decoding error probability is bounde€ OPtimization problem solutionis; =1-%,i=1,..., L.
away from O for any value of. We can give the event,. <1 For % +i-1<K< % +landl =
the interpretation of outage event. 1,...,L —1 the optimization problem solution is;, = --- =
We would like to set a lower bound for the error prob@z—i+1 = 0 andap_; = --- = a1 = %7 By assigning

ability for each channel realizatioa, which we denote by the optimization problem solution, we get the desired upper
PLB(p, o). We know thafu,e < P&+ ar—itpar-p) bound. The optimization problem is solved on appeindixaB.

For the caser:ol ar_i+Bar_p < K —r, we take From Theorerh2 we get an upper bound on the diversity or-
- der by assuming transmission of th&" complex dimensions

PLB(p a) = O(KT)efL(pyg)A(KTH(KTfl)ln(L(p-,g)) over theB + 1 strongest singular values. This assumption is
4 equivalent to assumingeamforming which may improve the

where L(p,a) = pl~#(+2Z ar—itbor-s) 5 1 For the coding gain, but does not increase the diversity order. This
Caser:_ol an—i + Bar—p > K —r we get thatu,. < 1, assum_ptmn allowes us _tc_) derive a ower nour_1d on the average
and we take d_ecod_mg error proba_b|I|ty_. However, we still get maximal
diversity order of M N in this case.
LB C(KT) _ sk - - :
P " (p,a) = Te . Let us consider as an illustrative example the casé/of
_ o N = 2.Inthis case, fob < K <  we getdj (r) = 4(1—£%).

In order to find an upper bound on the diversity order, Weg, 2 - g < 2 we getd; (r) = 2X-(1 — =). In both cases
would like to average®”? (p, a) over the channel realizations.g < °. < K For this set up We have zlgingmar values and
In our analysis we consider large values @f and so we ¢, a1 > as > 0. The optimization problem is of the form
calculate min,>o 1 + 3az, Where for0 < K < 1 the constraint is

— . RS _ D = K—r,and forl < K < 2 the constraint isvs+So =

Po)S PLB(p. ) - ELON=M|+2i-Das g, (12) P02 , < raint igv, 1

() /a>0 e (pa)-p a (12) K — r. For the case) < K < % the optimization problem



solution isa; = a2 = 1 — £, i.e. in this case the mostfor eachl =0,...,L — 1, we have such;, taking
dominant error event occurs when both singular values are y

very small. For the cas& = % the constraint is of the form 0K di(r) 0=r<L

az + G = % — r, and the optimization problem solution is
achieved for bottv; = oy = 1— 2 andas =0, ay = 4—3r.
For the case% < K < 2 the optimization problem solution
is achieved fora, = 0, a1 = % i.e. one strong singular

value and another very weak singular value.

gives us the optimal DMT of finite constellations.

Figure[1 illustrates the properties df, (r) presented in
Corrolaries 1[P. We take the exampleldf = 4, N = 3. For
0 < K < 2 we get upper bounds that have diversity order
12 for » = 0. We can see that in the ran@e< » < 1, the
upper bound of = 2 is maximal and equals to the finite

N ‘ ‘ ‘ ‘ ‘ constellations optimal DMT. In the range< K < 2.5 we
can see that the upper bounds have the same diversity @rder
1op - DMT of finite ] atr = 1. In the rangel < r < 2, the upper bound oK = 2.5

constellations!

is maximal and equals to the finite constellations optimallDM
in this range. FoR.5 < K < 3, the upper bounds equal
atr = 2. Inthe range < r < 3, the upper bound oK = 3 is
maximal and again equals to the finite constellations optima
DMT in this range.

diversity order - d
(2]

=1

OO 0‘.5 1 1.5 é 2».“5 3
Multiplexing gain —r 12
Fig. 1. The diversity order as a linear function of the mudtiing gainr 1y
for M =4, N=3andK =1, 2, 2.5 and3. 10
<
o 9l
M-N
Coro(ljl\?r); 11)(1505 (1)< K < 5= w?]\?etl)z%(g) = MN. sl
—l+ —l+ —DN— _
For N+M—-1-2(1-1 +l-1 <K< N+M—-1—2 +1 1= 7t
1,...,L—1wegetdi(l)=(M—-1)(N-1).

15
IC dimension - K

Proof: The proof is straight forward frord}, () proper-

ties.
. Fig. 2. dj(0) as a function of the IC dimensions per channel &sefor
From Corollaryi1 we get that the range &fcan be divided =4, N = 3.

into segments, where for each segment we have a set of

straight lines, that are all equal at a certain integer point On figure2 we present the maximal diversity order that can
Note that at these points, we get the same values as the fileattained for different average number of dimensions per
constellations optimal DMT. channel use, i.e. the upper bound on the diversity order for
r =0, d(0), where0 < K < L. We present as an example

Corollary 2. Intherange! < r < /+1, themaximal possible o case wherds = 4, N = 3. For this case, in the range

d|ver§|ty order is achieved at dimension K; = %4_1 0 < K < 2 we getd;(0) = 12. It coincides with the result
and gives presented on figufd 1, where we showed that in this range the
5 K r straight lines have the same value fo= 0. Hence, for IC’s,
K, (r) = (M = )(N - Z)Kl — 1(1 N E) one can use up to 2 average number of dimensions per channel
. use without compromising on the diversity order. Startiragrf
=M=DIN =)= (r= DN+ M =2-1=1) K > 2, the tradeoff starts to kick-in and the maximal diversity
where! =0,...,L — 1. order starts to reduce as we increase the average number of

dimensions per channel use. Also note that for= 3 the

Proof: The proof is straight forward frord}, () proper- diversity order is6 whenr = 0.
[ |

ties.
From Corollary2 we can see thdj, (1) = (M —1)(N —1) IV. ATTAINING THE BESTDIVERSITY ORDER

anddy, (I+1) = (M —1—1)(N —1—1). We also know that  In this section we show that the upper bound derived in

dj, (r) is a straight line. Also, the finite constellations optimasectioriLll is achievable by a sequence of IC's in general and

DMT consists of a straight line in the rangec » < [+1, that lattices in particular. First we present a transmissioress

equals(N —1)(M —1) whenr =land(M —1—1)(N—-[—1) forany M, N, K; = % +landT; = N+ M —

whenr = [ + 1. Hence, in the rangé < r < [+ 1 for 1-2-1 wherel =0,...,L — 1, and as previously defined

K; = % + 1, we get an upper bound that equals td. = min(M, N). Then we introduce the effective channel of

the optimal DMT of finite constellations presented|in [3]. Ashe transmission scheme. Afterwards we extend the methods



presented in[[9], in order to derive an upper bound on th&yg 1 =1...T;, we define the effective channel ﬂyatsees
average decoding error probability of ensemble of IC's, fafs ;. It consists of the columns off that correspond to the
each channel realization. By averaging the upper bound oygJn-zero entries of, i.e H- - H - , whereg equals
the channel realizations, we find the achievable DMT of I€’s e non-zero ent”es Qf As anlexamp|e assume WIthOUt loss
these dimensions and show it coincides with the optimal DMJf generality that the f|rSLL entries Ofg are not zero. In this

of finite constellations. Finally, we discuss peak to averagasef. is an N'x; matrix equals to the firdt columns ofH.

propterues 0‘; the transmls?Iog stc;]h(:mg anc:hshovxi thaltth’:E accordance W|tH]3)H of 1S an NT)xK,;T; block diagonal
exists a single sequence of IC's that attains the optima atrix consisting of7; blocks. Each block corresponds to

of finite constellations. the multiplication of H with different column ofG,, i.e. H;
A. The Transmission Scheme is the i'th block of HC(Q Note that in the effective matrix
NT, > KiT;.

We would like to elaborate on the structurelﬁiﬁl) blocks.
Pr this reason we denote the columns Bf as h;, ¢ =

The transmission matri&,;, [ = 0,...,L — 1, hasM rows
that represent the transmission antenhas., M, andT; =
N+ M —1-2-1 columns that represent the number of chann(f

, M.
uses. , o
We begin by describing the transmission matrix structure in 1) The case wheréy > M. For this case the transmission
general for anyM and N. scheme hasv + M — 1 — 2 - [ columns. The firstV —
1) For N > M and Ky = MMED — A the M + 1 columns 0fGy, g,,- -, 0)y_ > CONAINM -
> _ T ; )

(N — M + 1) different complex symboals, i.e. there are
no zero entries in these columns. Hence, in this case the
first N — M + 1 blocks ofHe(fq? are

matrix Gp;—1 hasN — M + 1 columns (channel uses).
On each channel use, transmit differédt symbols on

antennad, ..., M.
2) For M > NandKN1 = w = N: H =H i=1,--- ,N—M+1. (17)
the matrixGy_1 hasM — N + 1 columns On the ]
first column transmit symbols, ..., zy on antennas After the first N’ — M + 1 columns we havel/ — 1 —1
., N and on theM — N +1 column transmit symbols pairs of columns. For each pair we have
ClcN(MfN)Jrlv'-~a$N(M*N+1) on antennas\/ — N + ﬁN_MJF% ={hy,... hy 1} (18)
3) ForK;, 1 =0,...,L —2: the matrixG; hasM + N — and R
1 —2-1 columns. We add td3;,;, the transmission Hy aryorer = {hgi1y-- 5 hart (19)

scheme off(;1 1, two columns in order to ge®;. In the

f|rst added column transmit+ 1 symbols on antennas 2)
,I + 1. On the second added column transmit

dlfferentl + 1 symbols on antenna&l — [, ..., M.

Examplee M = 4, N = 3. In this case the transmission

wherek =1,...,M —1—1.

The case wherg/ > N. Again the transmission scheme
hasN + M —1—2-1 columns. By the definition of the
first M — N + 1 columns ofG;, we get that

scheme forK = 3, 2.5 and2 (G2, G; and G, respectively) H;=A{h;,....hny;—y} i=1,-- M —-N+1
is as follows: N . (20)
0 0 0 We have additionalV — 1 — [ pairs of columns inG;.
1 r L For each of these pairs we get
T2 X4 xIs 0 0 0 (16)
z3 x5 0 x9 0 0 Hyr-nyok = {hy, - by} (21)
0 g 0 =z 0 =zi2
—_ and
Ko=¢ ~
2 — Hy-Ni2k+1 = {By—noykrts - Bog (22)
K,=210
- wherek =1,..., N —1—1.
Ko=1¢ Example: considerM = 4, N = 3 as presented il _(16). In this
B. The Effective Channel casel = 0,1,2 and we havek, = 3, K; = 2.5 and Ky =2

Next we define the effective channel matrix induced by tHgspectively.

transmission scheme. In accordance with the channel model) K. = 3: H(Q) is generated from the multiplication

from (2), the multiplicationH - G, yields a matrix with vV of the 3x4 matrlx H with the first 2 columns of the
rows and7; columns, where each column equalsfo- z,, transmission matrix. In this cach(? is a 6x6 block
t=1...Tj, as in [2). We are interested in transmittihg7}- diagonal matrix, consisting of 2 blocks. Each block
complex dimensional IC withi;T; complex symbols. Hence, is a 3x3 matrix. We get thatH, = {hy,hy, by} and

in the proposed transmission schendg, has exactlyK;T; Hy = {hg, s, by}

non-zero complex entries that represent thel;-complex 2) Ky = 140. Hcflf) is a 12x10 block diagonal matrix

dimensional IC withinCMT:, For each column ofy;, denoted consisting of 4 blocks. The first 2 blocks are identical



to the blocks oin?. The additional 2 blocks (multipli- K;7;-complex dimensional IC poi@' € Sk,
cation with columns 3-4) argx2 matrices. We get that

Hy = {ﬁlaﬁ%} and i, = {hs, h,}- Pe(z ) < Pr(||fel = R)+ /

3) Kog=2: He(?f consists of 6 blocks. In this case the last Z Pr(lll—z — ..l <|f..l) (24)
2Ablocks are3x1 vectors. We get that{; = h; and l€Ball(z' 2R) N Sk, 1, 1’
He = h,.

WhereBall@',2R) is a K;T;-complex dimensional ball of

We presentd ;) of our example in equatiof {23). Note thatadius2R centered around’, and i, is the effective noise

h; € C3 for 1 <i <4, and( is a3z1 vector. in the K;T;-complex dimensional hyperplane where the IC’s
From the sequential structure Bt} blocks [17){ID),[20)- resides. Note that the second term [nl(24) represents the

(22) it is easy to see that when two columnsHfoccur in a pairwise error probability to points withidall(z ,2R), i.e.

certain block ofH}), the columns off between them must the decision region is at distandeat most.

also occur in the same block, i.e./if, hy occur in a certain  Next we upper bound the average decoding error probability

block, thenh,, b, h, also occur in the same block. Next weof an ensemble of constellations drawn uniformly within

prove a property of the transmission sche@ethat relates to cube, 7, (b). Each code-book containgy,b2%:"t| points,

the number of occurrences of the columnsibiin the blocks  where each point is drawn uniformly withieube, 7, (b). In

of H'J. For each set of columns ifi/, we give an upper the receiver, the random ensemble is uniformly distributed

bound on the amount of its appearances in different blocksyithin {HC(Q - cubeg, 7, (b)}. Let us consider a certain point,

Lemma 1. Consider the transmission scheme G, | — z € {HC(Q. - cubeg, 1, (b)}, from the random ensemble in the
0,...L—1.Incase 0 < i—j < L, the columns h, ..., h, receiver. We denote the ring around by Ring(z ,iA) =
: ~ " Ball(z'iA) \ Ball(z', (i — 1)A). The average number of

N i ) o ]
may occur together in A — i + j blocks of Hg at most. In points within Ring(z ,iA) of the random ensemble is

case i — j > L they can not occur together in any block of

He(il:f) Av(z ,iA) = 7rC|HC(Q» - cubeg, T, (b) m Ring(z ,iA)|
Proof: See appendiXIC. = R Yoo T2KTY - okyTi—1
< Y| R JIA) < ——————— (A" TTA (25
< el Ringle,i8)] < e A (25)
C. Upper Bound on The Error Probability wherev,. = pTTlJFEleTL i, By using the upper bounds on

] . the error probability[(24), and the average number of points
Next we would like to derive an upper bound on thgthin the rings [Z5), we get for a certain channel realzati

average decoding error probability of ensemble BfTi- the following upper bound on the average decoding error
complex dimensional IC, for each channel realization. Weopability of the finite constellations ensemble, at paint
define [H{TH{)| = p= =" n | wherep=% is thei'th — ___ X
singular value ofHe(l), 1 < i < K;T;. We also define PEC(z, p,n) < Pr([ie] = R)+
n=(m,...,nx,7)". Note thatNT; > K,T;. 2 .
L ( i z) ’Ych(KlTl) Z P”’(ﬁez,l > M) . (Z-A)QKlTlflA

Theorem 3. There exists a sequence of K;T;-complex di- = 2

mensional IC's, with channel realization He(fcg and receiver (26)
,L,ZQITL i .

VNR 1, = p'~ %~ TR0 | that has average decoding error whereQ(K,T}) = % andfi..,. 1 is the first component

probability of i, (the pairwise error probability has scalar decision

ﬁ(H(fq?, p) = Pe(n, p) < D(KlTl)p*Tl(Kl*T)*Zf;TL e region). By takingA — 0 we get
_ PFOz’,p,n) < Pr(|ite > R)+

= D(KTy)p~ ") BT £:01

2R
_ x _
where D(K;T}) is a constant independent of p, and 7; > 0 %CQ(KlTl)/ Pr(fiez 1 > E)IQKLTL L. (27)
for every 1 < i < K;Tj. _ 0 _
Note that this upper bound applies for any valugof 0 and
Proof: We base our proof on the techniques developegdand does not depend an, i.e. PFC(z', p,n) = PFC(p,n).
by P(_)Ityrev [9] fo_r the AWGN cha_lnnel. However, the channel Now we divide the channel realization into 2 subsets:
considered here is colored. In spite of that, we show that whg _ KTy } _
: S ; ={n| X2 " < T(K —r),n > 0}, wheren =
affects the average decoding error probability is the dargu and 4 — KiTy ) g o
values product, which is encapsulated by the receiver VNgﬁl’ 1T = (| 20y i > TiE =), >

urc. This observation enables us to facilitate this colorebe' _I;or .?hafr?esfgswe lfpggrbtzysng;:: eéror pé?i%b'::g}r\,/g €
channel analysis. gin wi g <€ A. [ we upp u

t i d find bound on th babilit
Based on[[9] we have the following upper bound on theerms In[27) and find an upper bound on the ?rrozrfgg?ma y

maximume-likelihood (ML) decoding error probability of dac as a function of the receiver VNRy,.. = pl’?z’ KT




(23)

=== =15
oo o5
oo oo
oo T
oo
olololo Fio
oo &
ool

oo o 1o o

oo o e
oo Fio oo
olFoicioio

|
=~

We begin by upper bounding the integral of the second terfthe VNR is grater or equal to 1). Hence there must exist a

in (7). Note that coefficientD' (K,T;) that gives us
2
Prlficxa 2 ) < €752, PFC(p,y) < D (KiTy)p T-n+ =t (31)
Hence, the integral of the second term [[n](27) can be upgder anyp andy € A, where@(p, 7n) is the average decoding
bounded by error probability of the ensemble of constellations, foegain
22 channel realizations.
2R e 807 p2KiTi—1
U2KZTZF(KM)23KLTZ—2/ —dx Note that we could also takB > R.g, as the upper bound
oKD (K Ty) 2351 =2 in (29) does not depend oR and the upper bound if_(B0)
R B ) would only decrease in this case. It results from the fact tha
where [ —oxirri =z do = Pr(||fiex]| < 2R) < 1. we are interested in the exponential behavior of the error
As a result we get the following upper bound probability, and we consider fixed VNR (as a function ©f

2R . as an outage event. This allows us to take cruder bounds than
/ Pr(feg1 > 5):cQKlTl*ld:c < 2K (K1) 2352 [9] on (29), that do not depend oR.
0 (28)  For the case) € A, we get

By assigning this upper bound in the second terniof (27) we p_Tl(Kz—r)+Zf¥1Tl no> 1,

get
2R 2 Hence, we can upper bound the error probability foe A
%CQ(Ksz)/O Pr(fiez1 > E)CCQKZTFldCC by 1. We can also upper bound the error probability for this
case by the upper bound from equatibn] (31), as long as we
< YeeV/T 2K oKD (K 1) 23K T2 state thatD' (K;T) > 1. Hence, the upper bound frorh {31)
- (KT + 1) applies forn; > 0,1 <4 < K/Tj.
:prl(Klfr)JrzleTl g AR (29) Up until now we upper bounded the average decoding
2efiTi” error probability of ensemble of finite constellations. Now

In the next step we upper bourfelr(||fex| > R), the first extend those finite constellations into an ensemble of |Gtk w

term in [2Z7). We choose density v,., and show that the upper bound on the average
decoding error probability does not change. Let us consder
2KT) &+ 2KT;, o KT _n S .
R?=R%; = 5 Py, T = %p RN certain finite constellationCy(p,b) C cuber,r,(b), from the
- A tif] t Te random ensemble. We extend it into IC
orn € A we get tha
2 ) — N 72K T
Riy _ iS5y IC(p, K(Ty) = Colp,b) + (b +b) - Z (32)
2KiTy -0 where without loss of generality we assumed that

By using the upper bounds froml [9], we kr210w that for the caseiber, 1, (b)) € CK:7i. In the receiver we have

R2 ~ _Ber . R2 e ,
ot 2 L Pr(llfed = Ren) < 755 (o) ™™ 10(p, Ky, HY) = HY - Colp,b) + (b + ) HS - 22517,

Hence we get (33)
Pr(||fiex|| > Regt) < By exte_znding each finite constellation in the ensemble to IC
KT, m according to the method presented[inl(32), we get new ensem-

KTy

e*KLTzPFKsziZI T T =i e KT (30)  ble of IC’s. We would like to seb andb’ to be large enough
o such that the IC’s ensemble average decoding error prdtyabil
The fact thaty € A has 2 5|gn.|f|cant consequences: the V.NlﬁaS the same upper bound as[iil (31), and density that equals
IS greater or gqual to 1, and pincreases the maX|maI VNR IN~,. up to a coefficient. First we would like to set a value
the set also increases. For very large VNR in the receiver, # ' Increasingt’ decreases the error probability inflicted
upper bound of the first term_(80), is negligible compared % the codewords outside the S@HC(Q - Co(p, b)}. Without
the upper bound on the second terin.] (29). On the other hapg of generality, we upper bound the error probabilityhe t
the set of rather small VNR values is fixed for increasing yorgs . e {1 . Co(p,b)}  IC(p, KiT;, H')), denoted by
eff ) ) 9 eff /1



PIC(H' - Cy). Due to the tiling symmetryP!C(H') . Cy) D. Achieving the Optimal DMT
is also the average decoding error probability of the en@re

We begin withy € A. For this case, we upper bound the IC
error probability in the following manner

In this subsection we calculate the DMT of the proposed
transmission scheme. We upper bound the determinant of the
effective channel inverse, l)TH 0 +|~*, based on the effective

PJC(HCQ - Co ) PFC(H(Z -Co) + Pe( (IC \ Cy))  channel properties presented in subsemw B. In Theore

@ we showed that the upper bound on the error probability
where PFC(H() - Cy) is the error probability of the finite depends on this determinant. Hence, the upper bound on
ConSte”at'On{Hcﬁ Co}, and Pe(H() - (IC \ Cy)) is the the determinant gives us a new upper bound on the average
average decoding error probability to points in the {sHﬁQ - decoding error probability. We average the new upper bound
(IC\ Cp)}. For the case; € A, we know that0 < 7, < over all channel realizations and get the transmissionrsehe
T,(K; — r). Hence, the constriction caused by the channel DMT.
each dimension can not be smaller th,emz (Ki=7)_ As a The channel matri¥{ consists ofV - M i.i.d entries, where
result, for anyz; € {H, H CO} andzs € {HCH (IC'\ Cy)} each entry has distributioh; ; ~ CN(0,1). Without loss of
we 93t|\~’01 — | > 20 fl(Kz -m). By choosingt’ = generality we consider the case where the columnH adre
drawn sequentially from left to right, i.eh, is drawn first,

KT (K- r)+€ _ > . . . .
me P ? we get fory € A that [|z; — 25| > then h, is drawn et cetera. Columh; is an N-dimensional

24/ £ pe. Hence we get vector. GVenh, i1 ;w1 ---» Iy, We can write
KT h _@ min 7"'7&‘— E
Pe(H{ - (10 C0) < Pr(|lfeyll = \/ == p°): (Brningr vy 1) By
e where©(-) is an NXN unitary matrix.O(-) is chosen such
For p > 1 we get according to the bounds In [9] that that:

Pr(li. | > K, T, ) < e*KszlerEpKzTL(1+€)eKsz. 1) The first entry of@ hl 4, Is in the direction ofhj 1-
ex e 2) The second entrytg,.,, is in the direction orthogonal to
h in the hyperplane spanned 8%, ,,h; ,}.

j—1
3) The min(j, N) — 1 entry, hyingn)-1,5, IS in

As a result, there exists a coefficieht (K;7}) such that

Pe(HC(é[)-'(IC\Co)) SD”(Kln)p*Tz(Kz*T)JerlTl m; the direction orthogonal to the hyperplane spanned
_ _ ) BY {Prnax(2,j—nt2)s s i1} inside the hyperplane
forn € A andp > 1. This bound apphesﬂ any IC in spanned b){hmax (i Na1)s e hy s
the ensemble Fron[(B1) we can state t#4t“(p,n) =  4) The rest of the N — mln(],N) + 1 entries
Ec, (pFC( - Cp)) < D’(KlTl)p—Tz(Kz—r)wLqulTl i, are in directions orthogonal to the hyperplane
Hence, we get that {Pmax(1,j—n+1)s - Bj—1 )
Pe(p,n) < D(KTy)p ~Ty (K —r)+ S (34) Note thatﬁ_l,j, 1 <i <N 1< j < Mareiid
random variables with distributiod’N(0,1). Let us denote
where Pe(p,n) = Eg, (PIC( - Cp)) is the average by h;,;_; _;, the component of:; which resides in the
decoding error probability of the ensemble of IC's defined — & subSpace which is perpendicular to the space spanned
in 33), andD = 2max(D ,D") > 1. by {;_y,...,h;_,}. In this case we get
N

Next, we set the value of to be large enough such that

2 2 _
each IC density from the ensemble [nJ(33),, equalsy,. up Mg, i—kll” = Z |h”| 1<k < min(j, N) —1.
to a factor of 2. By choosing = b - p¢ we get N =kl (35)
o b PRI 1 If we assign|h; ;|> = p~%, we get that the probability
Tre = el Ty ey p—c density function (PDF) o, ; is
For each valug > 1, we get3v,. < Yoo < re. As a result (&) =C-logp-p & cem Pt (36)
we have
, (v, )fﬁ whereC' is a normalization factor. In our analysis we assume
Hre S fhpe = ;;eag < 2ptre. very large values fop. Hence we can neglect events where

. . . since in this case the PDE (36) decreases exponen-
Note that in our proof we referred to matrix of dlmenS|or§” <0 E136) P

tially as a function ofp. For very largep, &, ; > 0,1 <i < N
NTxzK;T;. However these results apply for any full ran k nd1 < j < M the PDF takes the following form
matrix with number of rows which is greater or equal to the
number of columns. ] f&)oxp i &, >0. (37)

By averaging arguments we know that there exists a 98- this case by assigning in[(35) the vectqr =
guence of IC’s that satisfies these requirements. (é1,4,...,¢én5)T, that has PDF which is proportional to



p~ Ll we get that where0<r<K;and!=0,...,L —1.

Ly mitee it vy Ee = 5 4L ine i

H@ij—l,...,j—kHQ:P Skt S = p 7 (38) Proof: The proof outline is as follows. The upper

where 1 < k < min(j,L) — 1 and a(k,¢) = Pound on the error probability from Theordm 3 depends on
B N - \HDTH{|~1. We upper bound this determinant value and

minse{kJrl ..... N} &, In addition l
average over different realizations (Héﬂz in order to find

|2 p minsenmy e = =08, (39) @, diversity order. We begin by lower boundingR' H)|.
Note that Based on the sequential structure®@f, we lower bound the
contribution of a certain column off, h;, 1 < j < M to
a(min(j, L) = 1,§) > --- > a(0,£ ) > 0. (40) the determinant. This gives us a new upper bound on the

) ) o . error probability for each channel realization. We avertge
Next we wish to quantify the contribution of a(cl:)grrta(ll? CoMew upper bound on the error probability, by averaging over
umn in the channel matriky;, to the determinantl.; Heg|- 7, .. 5, . From this averaging we get the required diversity
H(f:f) is a block diagonal matrix. Hence the determinant qfrder.

SO0
|Heg Heg| can be expressed as Specifically, we first lower bound the contribution

z z T of h; to the determinant [{42), by upper bounding
HG T H| = 11 &l (41) sminGE=1y (k)a(k, £ ). Based on LemmBl1, and the fact
=1 that when two columns off occur together in a block of
AssumeH,; = (El, e ,Em), i.e. H; hasm columns. In this He(f:f) all the columns off between them must also occur in
case we can state that the determinant the same block, we get

\H]H;| = |1y ||| oy 12 - - |2 % min{g,L)=1

- e bi(s)<N—k 0<k<min(j,L)—1. (43)
Note thatH; also has more rows than columns. The columns  s=k

of H; are subset of the columns of the channel maffix where Zmin(%L)ilb‘(S) is the number of occurrences of
Hence we are interested in the blocks wheéreoccurs. We s=k J(l)

know that the contribution of; to those determinants can bell: - '7’Lﬁ5k} In Heg blOCkS'_ H(_ence, we can state that
quantified by taking into account the columns to its left it o™~ b;(s) < N, by assigningk = 0 in (43). Also
each block. We consider two cases: note that for = 0, the sumy ™25~ bj(s)a(s,€,) is larger

« The caseN > M. In this case we can see fro@l?)-than for any othell <1 < L — 1. From the inequalities in
(I9) thath; may occur with{h,,...,h. ,} toits leftin (4Q), and the fact that fof = 0 we getb;(k) > 0 for any
different blocks. - - 1 <k <min(j, L) — 1, we can state that

« The casel/ > N. In this case we can see from{20)4(22) min(j,L)—1 min(j, L) —2
thath,; may oceur only With{h,u1 j—n-1)s- -+ 11} > bj(s)a(s,€,) < > a(s,€))
to its left in different blocks. 5=0 5=0
Based on[(38) and(B9) we can quantify the contribution of TV —min(j, L) + Da(min(j, L) — 1,£ ) = ¢(j).  (44)
h; to |HellchHeil:f)| by Using [42) and[(44) we can state that for a vegtjqrthat has
min(j,L)—1 PDF p~ >Li &5, we can lower bound the contribution of
thllzbj(o) H thj_j—l,...,j—kHij(k)i to |HC(QTHC(Q| by
k=1
o min(j,L) -1 by (k)a(k.g ) (42) ||ﬁj||2bj(0) mln(Jr[L) lHﬁij71 m.’jikszj(k) > p—c(j)_ (45)
k=1

whereb; (k) is the number of occurrences of in Héfcg blocks, o o
with only {h;_y,...,h;_,} to its left. b;(0) is the number of By taking into account the contribution of each columnto
occurrences ofi; with no columns to its left. Note that from the determinant we get that

the definition of the transmission scheme we get that fer0, |H(Z)TH(”| _
bj(k) >0 for 1 <k < min(j,L) — 1. off “eff L)

In the following theorem we calculate the DMT of the ﬁHh-H?ba‘(O) mmﬁ
)
j=1

o . 2b; (k)
proposed transmission scheme. Mg, j=nlIH (46)

, k=1
Theorem 4. There exists a sequence of K;7;-complex dimen- By considering the set of Vectoss,, .
sional IC’s with transmitter density ;. = p"7t and 7; channel -
uses that has diversity order

e that have PDF
~ L o G i r

p~ %=1 2«i=15:3 and by using the lower bound from {45) we

get

dicyn(r) 2 (M = DN 1) = (r = (N + M ~2-1- 1) [ Hd Hg) > pm 25O (47)



The upper bound on the error probability presented Mow we prove a Lemma that shows that the exponent of the
Theoren(B is proportional to integrand in the upper bound frofn (52) is negativedfor > 0.

p~ MKy gDt (-1 — p T KA e (4g)  Lemma 2. consider & ; > 0for 1 <i< Nand1<j<M,
i _ The sum
for p; > 0 and1 < i < K,T;, wherep~= are the singular X
values ofHe(f:f). Hence, in order to use the upper bound from c(d) = Z&J <0
Theoren B in our analysis, we need to show that by taking =1
£;>0,1<i<N,1<j< M we also get thay; > 0, foreveryl<j <M.
1 <i < K;T;. Note that the entries oHe(qu are elements of Proof: See appendixD. -

the channel matrix{. Also, all H's columns must appear in  |n a similar manner to [3],[17], for very large and finite
H'{). Hence, from trace considerations we get integration range, we can approximate the integral by figdin
pm ming (€0) _ _ the most dominant exponential term [n52). Based on Lemma
e <P mins(ms) < N . KTR p~ minea (€as), we know that the exponent of the integrand is always
= negative. Hence, we can approximate the upper bound by
As a result we get thatnin; ;(§; ;) > 0 if and only if finding
ming(ns) > 0, and sons > 0 for everyl < s < K;T;. As
the upper bound on the error probability [0 48) applies for . - )
n; > 0,1 < i < KTy, this upper bound also applies whenever gzlenAﬂ(Kl -+ Z(Z Sig — 7))
&,;>0,1<i<Nandl <j < M. In equation[(4l7) we
found a lower bound on the determinant. We use this low&s >, &; — c(j) > 0 the minimum is achieved when
bound to upper bound the determinant of the matrix inver@fvz1 & —c(j)=0for1 <j < M. This can be achieved
|H£QTH‘£Q|‘1 for instance by taking; ; =0for1 <: < N,1<j < M.
In this case we get that the diversity order equald<; — r)
which is the best diversity order possible for IC’s of comple

and as a consequence we can upper bound the error probabﬁiil%enSiO”Km-

We can express the average decoding error probability over. ext we upper bound the second term of the error prob-
the ensemble of IC’s for large as follows ability from (&1). For¢; ; € A we upper bound the average

decoding error probability per channel realization by 1thiis
Pe(p) = /HPe(p, H)f(H)dH= case we get

j=1 i=1

(HYTHG| < p205a ), (49)

/£ e X R G
i3 €

) Again we approximate this integral by calculatin% the most
where Pe(p, H) = Pe(p,§;;) is the ensemble average deyominant exponential term, ienin, va—l S G
coding error probability per channel realization, a@g >0 The minimal value for this case is glléﬁ(Kl - r).Jﬁence,
meanst;; > 0forl <i < Nandl <j < M. Wedvidethe o get diversity ordeflj(k; — r) also for the second term
integration range into 2 setsd = {&; | 2,21 21 & < in (BI). As a result we can state that for both terms[ (51)
T(K, —1)i&y; > 0 and A = {&; | Y, Y706 > we get the same diversity order, and the transmission scheme
Ti(K: — r);&,; > 0}. Hence, we can write the averageliversity order is upper bounded Hy(K; — r). By assigning

/ Pe(p, &5) f(&ij)d&i; (50)
§i,; >0

decoding error probability as follows the values off; and K; we get the theorem upper bound. This
_ concludes the proof. ]
Pe(ﬂ)i/ Pe(p,&i,5)f(&,5)di;+ The diversity order attained on Theordmh 4 féf, 7)
ts€A coincides with the optimal DMT of finite constellations ireth
/ _ Pe(p, 5z,z)f(5zz)d5w- (51) rangel <r g [+ 1. I—_lence, by cqnsidering <I<L-1,
i EA we can attain the optimal DMT witl, sequences of IC’s.

We begin by upper bounding the first term of the error Ve Presentas an illustrative example the casg/of: N =

; ; _ 4
probability in [51). Based on Theordh 3, the average degpdifr L€t Us consider the case where- 0. In this casel, = 3,

error probability per channel realization is upper bountigd @ndZo = 3, i.e. we transmiti-complex dimensional IC. The
Pe(p, H) < prl(Kl,T)JrZ?{ngz ", Using the upper bound transmission scheme diversity order in this casel is 3r,

on the determinan{{#9) and the fact t”ﬁ(l)TH(l)|_1 _ 0<7r <3 Inthis case the effective channel nlatriblb(g.),
SET, t that the first t £ th off “eff babilit consists of 3 blocksH; = (hy,h,), H2 = hy and Hs = h,,.
gﬂl)iis up’)pvtva? ggundgd b; Irst term ot the error proba IlyAccording to our definitions we get that

ﬁTfj\[ = lh, 1% - |IA 2 _ —min(&1,1,§2,1) | ,—&2,2
/ p TE=D+ T (e0) =il i) g, (52) L = Hfé“” P .p
£ €A == and aIsoHQlH? =p min(€1,1,€2,1) HQQHQ =p min(é1,2,62,2)



In accordance with[(81) we divide the integral irtaderms. where (gl, e ,ng) are the channel inputs. In the receiver

In the first term we solve the optimization problem we can state that the received signals @19 . ’ETZ)' By
ggl_ienA(‘l —3r) — (&2 + 2 - min (&1, &21) multiplying with U}T% we get
B 5 o (El,...,ng)'UIE:GZ—F(Ql,...,QTZ)U};.
+min (6.2, £2.2)) + ; ; Sirg The distribution of(n;, ..., n, ) is identical to the distribution

_ _ _ of (ny,...,np)Uk. Hence, multiplyingG; with Ug gives
One solution to this problem ig;; = 0 for 1 < i < 2, also exactly the same performance. For instance, in order to
1 < j < 2. In this case we get an exponential term tha{chieve full diversity and spread the power more uniformly,
equalsi—3r. For the second integral we solve the optimizatiofe takeG, and duplicate its structure times to create the

problem s o transmission scherr(éés). In this case the transmission matrix
min ZZ& _ Gés) consists ofsKyT, complex non-zero entries, i.e we
€ €A = 7 transmit ans K7, complex dimensional IC within theM T,

| hi h o bl uti _complex spaceG((f) is an MxsT, dimensional matrix, that
n this case the optimization —problem solution I§,q exactly the same diversity order @s (it duplicates the

2 2 - _
Zizl Z.ﬂ'zl &ij = 4 —3dr. Hence, all together we gety ¢ ofGy s times). Each row ngS) has exactlysV
diversity order that equald — 3r, that coincides with the : - (s) : .

non-zero entries. We defing,”’ as sTyxsTp unitary matrix.

optimal DMT of finite constellations in the range< r < 1. R (o) (s)
In the next theorem we prove the existence of a sequerldd [arge enough, the multiplicationGyy” - Uy~ spreads the

of lattices that has the same lower bound as in Thediem 4??:”? mo-;e uniformly over space and time, and still achieves
ull diversity.

Theorem 5. There exists a sequence of 2K;T;-real dimen- ] g

sonal lattices with transmitter density 7, = o't and 7; F Averaging Arguments

channel uses that has diversity order In this subsection we show that there exissequences of
lattices that attain the optimal DMT, where each sequente ou

dry1y(r) 2 (M =N =) = (r = )(N+M —=2-1-1) of the L sequences attains different segment on the optimal

where0<r < K,andl=0,...,L —1. DMT curve. In addition we show that there exists a single
_ . IC that attains the optimal DMT by diluting its points and
Proof: See appendik]E B adapting its dimensionality.

Note that we consider 2K;T;-real dimensional lattice, agq g consequence of Theordh 3 and Theofém 4 we can
as in the transmission schenig we spread the first(;Ti  giate the following

dimensions of the lattice on the real part 6f’'s non-zero

entries, and the othek,7; dimensions of the lattice on theCorollary 3. Consider a sequence of K7-complex dimen-
imaginary part ofG;’s non-zero entries. By doing that weSional IC’'s Sk (p) with density ;. = 1, that attains diversity
don’t necessarily transmit &,7;-complex dimensional lattice. order d. This sequence of IC's also attains diversity order

Considering the2K,T}-real dimensional lattice enables ugl(1 — %) when the sequence density is scaled to v, = p"”.

to use theMinkowski-Hlawaka-Segel Theorem [[9]/[12], and Proof: As ~, = 1 for everyp, Sxr(p) has multiplexing

prove Theorens. gainr = 0. We denote the error probability dfx7(p) by
E. Power Peak to Average Ratio Peg(p,0), whereO represents the multiplexing gain. Assume

that the error probability o6 xr(p) equals
For practical reasons, such as power peak to average ratio,

o Y —d
one may prefer to have a transmission scheme that spreads Peg(p,0) = A (p)p

the transmitted power equally over time and space. T%ere—hmp_)oo log, Pes(p,0) = d, i.e. Sr(p) has diver-

transmitting matrixG; contains exactly<;7; non-zero entries, sity orderd. By scaling the sequence of IC’s such that
where the rest of the entries are zero. In order to spread thé

power more equally over time and space we use the following Skr(p) = Skr(p)-p 2% 0<r<K,

unitary operations i.e., scalingSxr(p) by a factor ofp~ 2%, we get thatSxr(p)

has densityy;, = p"", multiplexing gainr and error proba-
UL is an MxM unitary matrix that spreads each column opility

G, i.e. spreads over spac&ly is a T;x1; unitary matrix . 1 41—y —d(1—r

that spreads each raw @f;, i.e. spreads over time. As the Peglp,r) = Pes(p™#,0) = A (p)p 0w,
distribution of H and H - U;, are identical, multiplyingU;, ~ As a result we get-lim,, log, Peg(p,r) = d(1 - %), i.e.
with G; gives exactly the same performance. Based on tl&(p) has diversity ordet(1 — + ). u
notations from[{R) we can state that

UrLGUg.

Corollary 4. The optimal DMT is attained by exactly L
Gi-Ur=(zy,..-,27,) sequences of 2K;T;-real dimensional lattices, [ =0, ..., L—1,



where each sequence attains different segment of the optimal  [5] V. Tarokh, H. Jafarkhani, and A. Calderbank, “Spaceetiblock codes
DMT. from orthogonal designs|EEE Trans. on Inf. Theory, vol. 45, no. 5,
pp. 1456 —1467, jul. 1999.

Proof: From Theorenil5 we know that there exists gl6] P. Elia, K. Kumar, S. Pawar, P. Kumar, and H.-F. Lu, “Exjilispace
time codes achieving the diversity multiplexing gain traffie |EEE

2Km-real_dime_nsi0.nal sequence of lattices with densjty= Trans. on Inf. Theory, vol. 52, no. 9, pp. 3869 —3884, sep. 2006.
1 that attains diversityM —[)(N —1)+I(N+M —2-1—1). [7] H. El Gamal, G. Caire, and M. Damen, “Lattice coding andaténg
Hence, based on CoroII 3 we can state that by scaling this achieve the optimal diversity-multiplexing tradeoff of o channels,”
2K,T;-real dimensional sequence of lattices into a sequen |EEE Trans. on Inf. Theory, vol. 80, no. 6, pp. 968 ~985, 2004.

= . ) q ) . q G8 M. Taherzadeh and A. K. Khandani, “On the limitations bEtnaive
of lattices with densityy,, = p"’* we get diversity order lattice decoding,1EEE Trans. on Inf. Theory, vol. 56, no. 10, pp. 4820
(M—1)(N—=1)—(r—1)(N+M—2-1—1), i.e. the sequence of 5 84?325;{ oct. 30010(-: dina Without Restrictions for the AGChannel”
lattices attains the optimal DMT line in the range r < [+1. %) & Polyrev on 1nf. Theory, vol. 40, no. 2. pp. e A pannel.
The optimal DMT is the maximal value betweénlines, for [10] S. Alamouti, “A simple transmit diversity techniquerfaireless commu-

< r < i i nications,”Selected Areasin Communications, |EEE Journal on, vol. 16,
each0 < r < L. Hence, there exist. sequences of lattices i 8' 5315160'1458 i ?1998 icati al .16
. . no. 8, pp. - , OC .

that attain the optimal DMT. . ) u é],.l] V. Tarokh, A. Vardy, and K. Zeger, “Universal bound o tperformance

Next, we show that there exists a single sequence of IC'S™ of lattice codes,’Information Theory, IEEE Transactions on, vol. 45,
that attains the optimal DMT. The optimal DMT consists of rF‘)O-GZ' PP, 678 EGﬁf_lykEafkligg- CGeometrv of NumbeNatt-Halland
L segments of straight lines. Each segment is attained B¢} Mathematical Library. ey o ehédrt-Hollan
reducing the IC’'s dimensionality to the correct dimension,
and diluting their points to get the desired density. Not th APPENDIXA
in Theorem#4 we showed that for each multiplexing gain, PrROOF OFTHEOREM[]
r, there exists a sequence of IC’s that attains the optimal
DMT. On the other hand, on Corollafy 5 we show that a

single sequence of IC’s attains the optimal DMT for afhyy

We prove the result for any IC with density... The proof
utline is as follows. We prove the theorem by contradiction
adapting its dimensionality and diluting its points. Alsot@& First, forda gl\ée.m IC with rek():ellj\_/le_:r dEnSItym :/ve asaun;e
that KTy > K\ Ty > -~ > Kp 1Ty 1. average decoding error probability that eq‘l‘Jas to t e lower
bound we wish to prove. Then, we derive a “regular” IC from
Corollary 5. There exists a single sequence of K,T,-complex the given IC with the same density.. and the same average
dimensional IC’s, that attains the L segments of the optimal decoding error probability. Regularizing the IC allows s t
DMT: find a lower bound on the IC maximal error probability that
depends on its density. We expurgate half of the codewords
(M-DIN=D=(-)N+M=-2-1-1) 0<r=<K with largest error probability and get another regular I1Ghwi
where | = 0,---,L — 1. The I'th segment is attained by density 2z=. Based on the average decoding error probability,
reducing the 1C’'s complex dimensionality to K;7;, and by We upper bound the expurgated IC maximal error probability,

diluting their points to get density ~,, = pZi". and based on its density we lower bound the same maximal
_ ) error probability, and get contradiction.
Proof: See AppendixF. B et us consider akT-complex dimensional IC in the

receiver,SjKT(p), with receiver densityy,. and average de-

. . - coding error probability
In this work we introduced the fundamental limits of

IC's/lattices in MIMO fading channels. We believe that this Pe(H,p) = (1 — E*)U(KT)efprc-Z(KTH»(KTfl)ln(urc)
work can set a framework for designing lattices for MIMO ’

V. CONCLUSION

channels using lattice decoding — 1 (513)
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discussions regarding this work. Next we construct a regularized I8, (p), from Sy, (p),
that has bounded and finite volume Voronoi regions, i.e.
there exists a finite radius such thatV(z) C Ball(z,r),
[1] 1. Telatar, “Capacity of multi-antenna gaussian chasfid€urop. Trans.  Vx & S};T(p), where Ball(x,r) is a KT-complex dimen-

Telecommu, vol. 10, pp. 585 —595, Nov. 1999. ; " ;
[2] G. Foschini, “Layered space-time architecture for \ss communica- sional ball centered around. We ConStrUCTSKT(p) in the

tion in a fading environment when using multi-element angy Bell ~ following manner. Let us defin€y(p, H) = {S1(p) O(Hew
Labs Tech. J., vol. 1, no. 2, pp. 41 -59, 1996. cuberr (b))}, i.e. a finite constellation derived froi,.(p).

[3] L. Zheng and D. Tse, “Diversity and multiplexing: a fumdantal e fim : : e
tradeoff in multiple-antenna channels|EEE Trans. on Inf. Theory, We turn this finite constellation into an IC by tllll’ﬁo (p, H)
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vol. 49, no. 5, pp. 1073 — 1096, 2003. in the following manner
[4] V. Tarokh, N. Seshadri, and A. Calderbank, “Space-tinteles for " I~ IKT
high data rate wireless communication: performance iteand code Skr(p)=Colp,H) + (b+b)He,Z (54)

construction,”|EEE Trans. on Inf. Theory, vol. 44, no. 2, pp. 744 -765, ) o
mar. 1998. where for simplicity we assumed thatibexr(b) C CKT,



i.e. contained within the firsik(T" complex dimensions. Cor- Now we would like to upper bound the error probability,
respondingly, under this assumptidt,, equals the firs&kT’ Pe(Cy), of the finite constellationCy(p, H). According to
complex columns of.,. In this case, the tiling o€y (p, H) the definition of the average decoding error probability@ (
is done according to the complex integer combinations tfe definition ofCy(p, H) and the assumption il (b3), we get
H., columns. In generakuber(b) may be a rotated cubethat

within CM7T', In this case the tiling is done according to some et _ —

KT complex linearly independent vectors, consisting of limeafe(Co) < il )(41 i 6(b))(/V(KT)e_“”'A(KT) T

combinations off., columns. An alternative way to construct ) .
S;T(P) is by considering the transmitter 1Sk (p). In this wherelim,_,c(b) = 0. It results from the fact that i [8) we

case we can construct another IC in the transmitter take the limit supremum, and so fbtarge enough the average
decoding error probability of the IC must be upper bounded by

Skr(p) = {Skr(p) ﬂ cuber(b)} + (b+b)Z*KT  (55) the aforementioned term. Also, for ahyhe average decoding
) _ ) error probability of the finite constellatiad (p, H) is smaller
where W'thOUtKlTOSS of generality we assumed again thgf oq .5 to the error probability, defined ifl (8), of decoding
cubecr(b) € C27. In this caseSyr(p) = {Hew - Skr(P)}- gyer the entire IC. Based on the upper bound from (56) we get
Next we would like to seb andb’ to be large enough suchthe following upper bound on the error probability . ()
thatS};T(p) has average decoding error probability smaller or L— ") (1e(b)) = = B
equal toa(IQ{T) o~ Hre A(KT)+(KT~1)In(uxe) gnd density larger PeS;;T (Cp) < WC(KT)e Hre-A(KT) ,Mg({{T 1
-~ (57)
or equal toy,... Due to the symmetry that results from the tiling ) o
(4), it is sufficient to upper bound the average decodingrerr According to the definition ofy.. and due to the fact that
probability of the wordse € Cy(p, H) C S};T(P) denoted We are taking limit supremum: for afly< ¢; < 1 there exists
by Peg (Co) in order to upper bound the entire I§..(p) © large enough such that
average decoding error probability. HenBeS;;T(C’O) is also |Co(p, H)|
the average decoding error probability for the 3¢ (p). We 00l (Heg - cubegr(b)
can upper bound the error probability in the following mann?/vhere|00(

) Z (1 - 61)'Yrc- (58)

p, H)| is the number of words i@ (p, H). In fact
Pes;gT(CO) < Pe(Cy) + Pe(S;{T \ Co) (56) there exists large enou@that fulfils both [5Y) and(38).

. ) » In (&4) we tiled byb+ b . If we had tiledCy(p, H) only by
where Pe(Cy) is the average decoding error probability of, hen for large enoughwe would have got IC with density
the finite constellationCy(p, H) and Pe(Syr \ Co) is the larger or equal tq1 — e; )y,.. However , as we tile by + b,
average decoding error probability to points in thes&€t,\ \ye get forb large enough thaﬂ};T(p) has density greater or
Co(p, h)}, i.e. the error probability inflicted by the replicatedequa| to 1—? ~re. Hence, for any) < e, < 1 there existsh

codewords outside the sé(p, H). 1+%
. , large enough such that
We begin by upper boundinBe(S+\ Co) by choosing .
to be large enough. By the tiling at the transmitfer (55) dred t Yre 2 (1= €1)(1 = e2)vre. (59)

fact that we have finite complex dimensi@l’, for a certain where,.. is the density ofS7.,(p). Again, there also must

channel realizatiort,, we get that there exis®(H..) SUCh  gyist |arge enough that fulfils (57) and[(59) simultaneously.

that any pair of points; € Co(p, ), 22 € {Skr\Co(p,h)}  Hence, for large enoughh we can derive froms,.,(p)

fulfils ||z, — 2, > 2b - 6(He,). The termé(He,,) is a factor o | Sro(p) with density 7/, > (1 — e1)(1 — €2)re

that defines the minimal distance between these 2 sets fog 4, aver?%e decoding error prob_ability smaller or equal to
b

given channel realization. Note that also for the cde> N, (1—¢*)(1+e C(KT)etee ART)+(KT—1) In(ure)
there must exist such(H,. ), as we assumed that,.(p) is B 2 _ s we know that ' ina th .
KT-complex dimensional IC, i.e. the projected Bk (p) = y averaging arguments we know that expurgating the wors

H..Sxr(p) is also K T-complex dimensional. Hence, we ge{1alf of the codewords b, (p), yields an ICSy,(p) with

Pe(Sier \ Co) < Pr(|fiey]| > b'3(Hea)) Tre 2 (L—€)(1 —€2) o= =Tre (60)

wheref,, is the effective noise in théT-complex dimen- and maximal decoding error probability

sional hyperplane wher§,..(p) resides. By using the uppersupzesm Pegn () < (1)1 + €(b))C(KT)e—tre AKT) | KT—1
KT KT

bounds from[[9], we get that fo&% > o2 (61)
WherePeS;gT (x) is the error probability ofc € Sy (p).

From the construction method &f,..(p), defined in [G4),

, it can be easily shown that tiling(p, H) yields bounded
Hence, forb large enough we get that and finite volume Voronoi regions, i.e. there exists a finite

. L C(KT) _. % (. radiusr such thatV (z) C Ball(:c,“r), Vo € Sgr(p). Due
Pe(Skr\Co) < (1—€)——=e™" ARDFET=D 0l 41 the symmetry that results frosi,.-(p) construction[(B4),

~ oo (b 0(Hea))%e rer

Bl >0 <
Pr(||fiex|| > b 6(Hez)) < e YK To?



it also applies forS}gT(p). Hence, there must exist a pointwe get

zo € Skp(p) that satisfiegV ()| < -

< ==. According

min(K —r)(N +M — 1) + (M — B)(N — B)

to the definition of the effective radits ifll(1), we get thata=o

ret (o) < ret(Vre). HeNce, we get
sup,e g Pegn (x) > Pegm (xo) >

Pr(||fiexll > remr(w0)) = Pr(llZes ]l > rerr(Fre))
(62)

where the lower bounoPeS;/(/ (o) > Pr(||exll = Tem(x0))
was proven in[[9]. We calculate the following lower bound

Pr ([[f2e]| = rerr () >

réute’  LKT—1,~3% e Tgé{T—ze—;éfé
/762\ff o2KToKTT(KT) "= o2KT-22KTT(KT) /e
(63)
By assigningr?; = (FW(_KZJ}) )T we get

SuPg g Pegn (x) >
1

1
’Y; KT
A(KT)+(KT—1) In(Z)

_ Jrc

C(KT) - e 27ec?
(64)
Hence, for certairg; ande; we get
sup, g Pegn () >
C(KT) - e #reARD+HET-1 (i) (g5)

KZ. For b large enough we gefl —

where i, = L=
< 1, and so [(6b) contradictd (61). As

€)1 + €b))

result we get contradiction of the initial assumption i

(G3). This contradiction also holds for anie(H, p)

(= O e AKT)+(KT=1)In(e) | Hence, we get that

— C(KT Y
Pe(H, p) > (4 )e—m-c,-A(KT)Jr(KT—l)ln(um)_ (66)

Note that the lower bound holds for afly< e;,es,¢* < 1

and also that the expressions [n](58).](66) are continuoss.
a result we can also set = e; = ¢* = 0 and get the desired
lower bound. Finally, note that we are interested in a |OW%
bound on the error probability of any IC for a given chann

realization. Hence, we are free to choose different valoes
! . . !
b andb for each channel realization. and

APPENDIXB
PROOF OF THE OPTIMIZATION PROBLEM INTHEOREM[Z

We would like to solve the optimization problem ih{15)

for any value ofK = B+ 3 < L, whereB € N and0 <

a
n

?his problem. Let us take’DJrl =

B—-1
—B(N+M-1))ar - p— Y 2i-ar; (67)
=1
wherea > 0 signifiesa; > -+ > ar > 0. We would like
to consider 2 cases. The case whéf@/ — B)(N — B) —
B(N +M —1)) > SF "2 and the case wheré(M —
B)(N — B) — B(N + M — 1)) < 27" 2i. The first case,
where((M — B)(N —B) = B(N +M —1)) > B(B—1), is
achieved fork’ < 4N __ |n this case we use the following

i N+M-—-1" ; X
Lemma in order to find the optimal solution

Lemma 3. Consider the optimization problem
D
mcinBlcl — ZBiCi
- =2
where: (1). ¢; > --- > ¢p > 0; (2). By > Y2, B; and
By > ---> Bp > 0; (3). 501+Zf):2q =4 > 0, where
0<p gé_l. The minimal value is achieved for ¢
Cp =

D—1+B8"

Proof: We prove by induction. First let us consider the
case whereD = 2. In this case we would like to find

(68)

min B161 — BQCQ.
c

wherecy > ¢ >0, ey +¢co =6 >0, By > B, > 0 and

0 < B8 < 1. ltis easy to see that for this case the minimum is
achieved forc; = ¢o, as increasing; while decreasing: to
satisfy Sci + co = § will only increase [(€B).

Now let us assume that fab elements, the minimum is
achieved forc; = --- =c¢p = D—Ll—ﬁ-,ﬁ' Let us consideD + 1
elements with constrainic; + Zg;l c; = 0. If we takec; =
e =Cpy1 = DLH} we get

D+1
4

(B1 — ; Bi)D—W.

e would like to show that it is the minimal possible value for
ﬁ — ¢ > 0. In this case
we getBe, + 30,7, ¢; = LD IEAC in order to satisfy
Be, + 2Pt e; = 6. According to our assumptiom, ¢; —
>i2, Bic; is minimal for¢; = --- = ¢p = 555 + 5=75-

By assigning these values we get

A (69)

D+1
0

D
(Bl — Z Bl)D—-i-B + (Bl - ZBl)D—;Hﬁ + Bpyi€

B < 1. First we consider the case 6f< K < 1, i.e. the =2 =2
case whereB = 0. In this case the constraint boils down tdvhich is greater thari (69). This concludes the Lemma proof.
ar =1— &. By assigninga; = --- = ar =1 - & we get u
thatdxr(r) < MN(1—+%). Next we analyze the case where For the case((M — B)(N — B) — (N + M — 1)) >
K > 1. Due to the constraint, the minimal value must satisf§8(B — 1), the optimization problem coincides with Lemma
oy - = ay_p. From the constraint we also know thal8 as it fulfils the conditionB; > Zf’ﬁ B; in the lemma.
arp =K —r— Zf;‘ll ar_; — Bar_p. By assigning in[(I5) Hence, the optimization problem solution faF < 4

NtM—1 'S



al=-=ap_1= % = «. The minimum is achieved concludes the proof.
whena; = «, i.e. the maximal valuey;, can receive under
the constrainty; > --- > a7 > 0. We get thata = 1 — &,
and the optimization problem solution df_{15) for the case
K < 74585 isdxr(r) < MN(1— %), .

For the cas¢(M —B)(N—B)—B(N+M—1)) < B(B-1),
or equivalentlyK’ > 47—, we would like to show that the
optimal solution must fulfier, = 0. It result from the fact that
for the optimal solution, the terf{ )M — B)(N — B) — B(N +
M —1))ar—p — 27" 2 ar_; in (B7) must be negative.
This is due to the fact that taking; = --- = ap_; gives

APPENDIXC
PROOF OFLEMMA [1]

We begin by proving the cas®¥ > M. From the construc-
tion of G, it can be seen that a set of colum{¥s,, ..., h;}
may occur inN — i+ j blocks at most. It results from the fact
that we can only subtrad?/ —: columns to the right ok, (18),
and;j — 1 columns to the left ofy; (@19), and still get a block
that contains{h;, ..., h;} (or even more specifically a block
that contains{h;,h;}). In addition, columns{h,...,h;}
. - . . must occur in the firstv — M + 1 blocks, as these blocks
negative vaIueBHlence, for the optimal solution we woulellkequal toH (L7). Hence, we can upper bound the number of
to maximize) ;" ap—i —far—p = K —r—ar. Bytaking - ocovences bW — M +1+j—1+M—i=N — i+,
ar, = 0 the sum is maximized. Hence, the optimal solution Next we prove for the casdl > N. In case) < i—j < N,
for K > 57/g— must haveny, = 0. the set of columngh,, ..., h;} may occur inN —i+ j blocks
(MI\E)J\:\/l)IS\t[Ei%on&der the ger}eral case. Assume thakior o most. we divide the proof into four cases.
N+M-1-2(-1) +Z__ 1 the opt|m_al solution must havey, = 1) First consider the case wherel N andj > M —N+1.
-+ = ar—y1 = 0. Firstwe consider the case wheres | < In this case the set of columr{g;, ..., h;} occurs in
B —1. For this case the constraint)s,_; a—i+faL—p = all the firstM — N + 1 blocks [20). As for the additional
K—r, ie. th_e constraint contains at least 2 singular values. N —1—1 pairs of columns, the set of columns belongs
We can rewrite[(TI5) as follows both to the sefh,, ... hy} and{ly n1---shas)-
min(K —r)(N+M—-1-2-1)+ ((M — B)(N - B) Hence, in the additional column pairs we can subtract
a>0 N —i columns to the right of,; 1) andj — M + N —1

Bzl columns to the left of; (22). If we add it together

- BN+M-1-2 Z))O‘L*B - Z 2(i—1) - ap—. we get that the number of occurrences can not exceed
i=l41 70) N —i+j.
2) For the case < N andj < M — N + 1 the set

For the casg(M — B)(N = B) = (N +M —1—-2-1)) > of columns can have only occurrences in the first

(B—1-1)(B—1) we get thatk < % +17 and we M — N + 1 blocks. In this case the séth;,...,h;}

(M—14+1)(N—1+1) : occurs within{h,, ..., h,} but does not occur within
also assumed that’ > NTM—1-2(-1) +1— 1 F.Or thIS case {h {hl } He];(}:e the transmission scheme
we can use Lemmig 3 and get that the optimization problem SM-N+1 - =2M - X . .

lution i = - _ K-r—ar _ o Th only subtracts columns to the right &f (2I). In this
solution Iso«y,—j—1 = -+ = &,_B = B 7 = Q. e o .
minimum is achieved for, ; — a. We get thatay, — - - - — case we can hav&’ — i subtractions and together we
an 1 =0anday = - — ap_; = ;}((_y_ Hence, for the get N — ¢ + j occurrences at most.

3) Forthecase > N andj > M—N+1we haveM —i+1
case ML _HD) |y < g o MDINZD g pe ) > j = + it

C NTM-1-2(1-1) s= N+M—1-21 occurrences in the first/ — N + 1 blocks. In this case
oplglguzanon problem solution iglgr(r) < (N — I)(M — the set{h;,...,h;} oceurs within{hy, _n,1,--- by}
D=t but does not occur withigh,, ..., hy}. Hence we can

For the cas¢(M —B)(N—B)—-A(N+M—1-2:1)) < (B subtract up tgj — M + N — 1 columns to the left of;
1 —1)(B —1), or equivalentlyx’ > % + 1, the term (22). Together we gelN — i + j occurrences at most.
(M—=B)(N-B)-B(N+M~-1-2-1))ar_p—>1 1, 2(i—  4) For the last case we have- N andj < M — N + 1.
l) - ar—; in (ZQ) must be negative for the optimal solution. In this case the set of columns can only occur in the
This is due to the fact that by taking; = --- = ar_; 1 first M — N + 1 blocks. In this case there are exactly
we get negative value. Hence we would like to maximize the N — i+ j occurrences in the first/ — N + 1 blocks.
sum Zf:l}rl ap—i+ Par_p =K —r —ar_;. The sumis In casei — 5 > N, the set of columns does't occur in any
maximized by takingv;,_; = 0. Hence the optimal solution block as each column af; doesn’'t have more tha®’v non-

for the casek > % + [ must haveny,_; = --- = zero entries.

ay = 0. Note that for the casé = B — 1 we have only 2
terms in the constraint;,_p1+1 + far—p = K —r. However,
the solution remains the same.

For the case{ > % +1—1andl = B the
constraint is of the forna;,_ g = £="

K-l

ap—py1 = -+ = ar = 0. In this case the optimization prob-
lem solutionisay = - - =ap_; = gj and the optimization

problem solution gives g (r) < (M —1)(N—1)%=%. This

. Again we assume that

APPENDIXD
PROOF OFLEMMA 2]

We know that

|
M“

(i) a(s.£,)
s=0

+(N —min(j, L) + 1)a(min(j, L) — 1,§j)



where

a(k,§,)= _ min 0 <k <min(j,L) — 1

€s.j
se€{k+1,...,N}

and by definition
a(min(j, L) = 1,€,) > - > a(0,€ ) > 0.

In order to prove the Lemma we begin withmin(j, L) —
1,§j). We know that

N
Y &= (N-min(j,L)+1) min&,; (1)
s=min(j,L)
wheres € {min(j, L), ..., N}. We can also see that
;> i 5] 72
g Z IRy S (72)

for 0 < k < min(j, L) — 2. Hence we get

N
c(j) =Y &; <0.
=1
This concludes the proof.

APPENDIXE
PROOF OFTHEOREM[G

We prove that there exists a sequence2df;T;-real di-
mensional lattices (as a function gj that attains the same
diversity order as in Theorefl 4. By using tihinkowski-
Hlawaka-Segel Theorem [[9]/[12], we upper bound the erro
probability of the ensemble of lattices, for each channal-re

ization. This upper bound equals to the upper bound derived i
Theoreni B. Then we average the upper bound over all channel

realizations, and receive the desired diversity order.

r

probability is upper bounded by

>

IBall(O,QReff)(i) : PT‘(Hﬁ0x”>H£ - ﬁcx”)

leArcal#O
+Pr(|‘ﬁcx|| > RCH) (73)
2
where 2153%2 = ure, andn,, is the effective noise in the

KlTl-compiex hyperplane wherg,.. resides in. By defining

frc(&) = IBall((),QReff)(g) : Pr(HﬁcxH>”£ - ﬁcx”)' we can
rewrite the upper bound on the error probability frdm](73)

> feel@) + Pr(llitel > Rer)- (74)
TEAc,z#£0
Note that
e / fro@)dz + Pr(|iil| > Res)  (75)
R2EK; Ty

is equal to the expression ih {27), where is the density of
the lattice induced in the receivéy,., as defined above.

We need to show that there exists a single probability mea-
sure for all channel realizations, that gives average dagod
error probability over the ensemble, which is upper bounded
by (78). Hence, we consider the ensemble of lattices in the
transmitter which is fixed for each channel realization. For
this reason we define
— ()

—exX

’

Yox (76)

Note that the operation if_(¥6) does not change the error
probability of the lattice when we use regular lattice dengd
Each lattice in the ensemble has density = p"7t. Now we
define the following indication function

L, |H-zl|<2R
{ 0, else

that is the function is one if is within the ellipse and zero

Iellipse(H,QR) (2)

3

~We consider a2K;Tj-real dimensional ensemble of lat-giherwise. Let us denote the error probability of a lattice i
tices, transmitted using the transmission scheme definedyid ansemble for certain channel realizatiphy pY (1, p),

subsectiol TV-A. We spread the firéf; 7; dimensions of the
lattice on the real part of the non-zero entries(hf and the

wherev is a random variable that represents a certain lattice
in the ensemble. Using regular lattice decoding, we get the

other K;7; dimensions of the lattice on the imaginary parfyiowing upper bound on the error probability for eachitzt

of the non-zero entries off;. Each lattice in the ensemble

has transmitter density,, = p"”!, i.e. multiplexing gain

r. We begin by analyzing the performance of the ensemble
of lattices in the receiver, for each channel realizatiore W

assume a certai

@(ghannel realization that induces recéiNBr
1—-r — 141 nq
Hre = P

i=1 %7 wheren > 0. For each lattice in

Ky

the ensemble we get that the channel realization inducewa ne

lattice in the receiverd él? -z, with density~,.. in accordance
with @) and subsectio@B. For lattices with regular ikt

decoding, the error probability is equal among all codewordsponds ta/ andn,, ~ CN(O, (Hé

codeword
P (n,p) < Pr(|A - fie || > Regr)+
> (2) - Pr(|A-a

ellipse(Hég ,2Refr) —CX”
LEAgr,zF#0

>[[ A+ (z = o)) (77)

where A is a K;Ti)xK;T, matrix that satisfiesATA
HC(QTH(Q, A4 is the lattice from the ensemble that corre-

DTH)1). Note that[717)

Hence, it is sufficient to analyze the lattice zero codewoid equal to[[74), and the corresponding terms in the expressi

error probability. We define the indication function

L, Hl” <2R

Iano,2r)(z) = { 0. else

In a similar manner td{24) we can state that for each lattice
induced in the receiver),., the lattice zero codeword error

are also equal.
Let us defineg,.(z) = ]e”l_pse(HéwRe“)@
[[A(z — fex)|l). We get that

%/ %@@Z%/ o)z, (78)
R2K T, R2K; T

)PT(HAﬁcxH>



Next we show that by averaging the upper bound[d (7By Crc(p, KoTp,b) C cubek,,(b). We extend each finite
over the ensemble of lattices in the transmitter, with theesti  constellation in the ensemble into an IC in a similar manner

probability measure, we get to (32)
! 2KoT,
EU{Pe(U) (777/))} S ’YT‘C/ ch(g)dz + PT(”ﬁex” Z Rcﬁ'). Ic(p’ KOTO) = CFC(p’ KOTO’ b) + (b + b ) ’ Z oo, (81)
- 2K T
o (79) By choosingy = |/ £0Lo )57 +2¢ andpy’ = |/ Kolo =40+,
We prove [(79) by using thidlinkowski-Hlawaka-Segel theo- \ve get a sequence of ensembles of IC’s with multiplexing
rem, [9], presented on Theordrh 6. gainr = 0. For a certain channel realization> 0 we get in
Theorem 6. On the set of all the lattices of density » in accordance with Theorefn 3
. - o Ko
RQKLT_Z, there exists a probability measure v such that for Pe(p,n, KoTy) < D(KoTp)p~ T Kot ns (82)
any Riemann integrable function f(x) which vanishes outside o
some bounded region we have where Pe(p,n, KoTp) is the average decoding error proba-
bility of the KyTy-complex dimensional ensemble of IC’s.
E,,{Z g(z)} = 'y/ g(z)dx (80) From Theorenil4 we know that by transmitting the ensemble
zEA R of IC’s over the transmission matri&,, and averaging over

the channel realizations, we get diversity order, = M N.
Transmitting overG, gives us aKy7p-complex dimensional
ensemble of IC’s withinCM7To

Note that considering 2K;T;-real dimensional lattices  Nextwe derive from the<,T,-complex dimensional ensem-
enables us to use this theorem. Hence, by choosiRgyir,  ple of IC’s, anotherk;T;-complex dimensional ensemble of
9(x) = gre(z), and considerind (17)[(Y8) we get the desirefbs \wherel = 1,..., L—1. For each IC/C(p, KoTp), in the
upper bound [(79). As a result, we can upper bound thesemple we take the firgh?% 74 | points inCpe (p, KoTo, b).
ensgmt_)le average decoding error probability for each alan(ye take the components of these points insidbe x, 7, (b),
realization by the upper bound from Theorgi 3] (34). and denote this new finite constellation & (p, K1}, b).

Now we are ready to lower bound the diversity order. Acrhen we replicate these points in a similar manneft0 (81). In

cording to Theorerfil6 there exists a single probability meBSYhis case we get a new,;7;-complex dimensional IC
that satisfies[{80), for any Riemann integrable functiort tha

vanishes outside some boundedNregioj\r}. Basedoh (47) andC(p, KiTi) = Crc(p, KiTy,b) + (b +1b) - 22571 (83)
Lgmmﬂ, we getf(f):cthe S€ti;1> i %_:jﬁl 5ivjb§ TléKé_A By doing it to each IC in the ensemble, we get a new
r);&ij > 0} a set of functionsg,. (x), which are bounded. As ,T;-complex dimensional ensemble of IC’s. This new en-
a result we can upper bound the ensemble average deco

- : ) Bfhble is equivalent to ensemble of IC's generated by draw-
error probability for th|§vset l?\}/ the expression frdm](349r F ing uniformly [25:7t| points insidecube, (b), and then
the set of event§, ;| >°,=; > -, &ij > Tl(Kl_r)ﬁ £ 20} replicate these points according tb + b')Z2%:1T, Each IC
we upper bound the ensemble average decoding error progé)iuence in this ensemble has multiplexing gain= 0.
bility by 1. This bounds are the exact same bounds we used KT, KT o, ) KT, KT,
in order to average over the channel realizations on Theorfic€ 0 > / Z2tp ™2 and b > /ZCtpTETe, we

@. Hence, by averaging over the channel realizations we in accordance with Theorgnm 3 that for a certain channel

for the ensemble the same lower bound on the diversity ordg@ization; > 0
as in Theoreri]4. This concludes the proof.

where E,{-} represents the expectation with respect to the
measure v.

Pe(p,n, KiTy) < D(K,T)p T+ ZE e (ga)

APPENDIXF wherePe(p, n, K,T}) is the average decoding error probability
PROOF OFCOROLLARY 5 of the K, T;-complex dimensional ensemble of IC’s. By trans-

The proof of this corollary relies heavily on Theorgm 3. wanitting this ensemble of IC’s on the transmission mateix
begin by describing thé. ensembles of IC’s and how theyand averaging over the channel realizations, we get diyersi
are transmitted. Then we use averaging arguments in ordePtgerds, = (M —1)(N —1)+I1(N+M —2-1—1). Transmitting
show that there exists a singe sequence of IC’s that attaes @ver G: gives us ak;T;-complex dimensional ensemble of
0pt|ma| DMT. IC’s within (CMTZ.

We begin by considering a sequence &f7T;-complex From the sequential structure of the transmission scheme
dimensional IC's with multiplexing gainr = 0, i.e. the we get that omitting the2 - [ rightmost columns ofGg
transmitter densityy,,, = 1 for any p. In a similar manner yields G;. Hence we can derive from th&7T,-complex
to Theorem{ B, we first consider an ensemble of finite codimensional ensemble of IC’s, that attains diversity order
stellations drawn uniformly withincubeg, 1, (b) € CHoTo,  dg, , anotherK;T;-complex dimensional ensemble of IC’s the
Each code-book containgy, b2%0T0| = |p2KoTo| points, attains diversity ordetx,, wherel = 1,..., L — 1. We attain
where each point is drawn uniformly withinubeg,,(b). it by diluting the points of each,Ty-complex dimensional
Let us denote a certain finite constellation in the ensembl@ in the ensemble in the aforementioned manner, and then



reducing its dimensionality by dropping the- [ rightmost
columns ofGj.

So far we have shown the connection between the en-
sembles. Now we would like to show that there exists a
certain sequence of7Ty-complex dimensional IC's, that
gives us the desired diversity orders by diluting its poantsl
adapting its dimensionality. We denote the average degodin
error probability of theK;T;-complex dimensional ensemble
of IC’s by A;(p)p~ %1, wherelim,_, % = 0. We also
define I; , as the event where &;T;-complex dimensional
IC in the ensemble has average decoding error probability
which is smaller or equal toL + 1)A;(p)p~ %%, where
l=0,...,L — 1. From averaging arguments we know that
Pr(l;,) > LLH We wish to show that the probability of the
event{lp, NI, ---NIr_1,} is bounded away from zero.
From averaging arguments we know that

L-1
1
P’I’(Io_’p ﬂh,p- .. mILfl.,p) >1-— ; P’I’(Il'_’p) > L——|—1

Hence there must exist a sequencelQfl-complex dimen-
sional IC’s that attains diversity ordetyx, and has multi-
plexing gainr = 0, from which we can derive for each
l=1,...,L —1, a sequence ok,;T;-complex dimensional
IC’s with multiplexing gainr = 0 and diversity orderik, .

Next we show that thesé& sequences attain the optimal
DMT. Consider a sequence &f;7;-complex dimensional IC’s,
that has multiplexing gaim = 0 and attains diversity order
dx,. From Corollary B we know that scaling this sequence by a
scalarp’yTz yields a new sequence of IC’s with multiplexing
gainr and diversity order

dg,(r)=(M =1)(N=1)—=(r=D)(N+M—2-1-1)

where0 < r < K;andl =0,..., L—1. Each of thel. straight
lines dg,(r), I = 0,...,L — 1, coincides with a different
segment out of the, segments of the optimal DMT. This
concludes the proof.
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