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Abstract—The fundamental and natural connection between
the infinite constellation (IC) dimension and the best diversity
order it can achieve is investigated in this paper. In the first
part of this work we develop an upper bound on the diversity
order of IC’s for any dimension and any number of transmit and
receive antennas. By choosing the right dimensions, we prove in
the second part of this work that IC’s in general and latticesin
particular can achieve the optimal diversity-multiplexing tradeoff
of finite constellations. This work gives a framework for designing
lattices for multiple-antenna channels using lattice decoding.

I. I NTRODUCTION

The use of multiple antennas in wireless communication
has certain inherent advantages. On one hand, using multiple
antennas in fading channels allows to increase the transmitted
signal reliability, i.e. diversity. For instance, diversity can be
attained by transmitting the same information on different
paths between transmitting-receiving antenna pairs with i.i.d
Rayleigh fading distribution. The number of independent paths
used is the diversity order of the transmitted scheme. On
the other hand, the use of multiple antennas increases the
number of degrees of freedom available by the channel. In
[1],[2] the ergodic channel capacity was obtained for multiple-
input multiple-output (MIMO) systems withM transmit and
N receive antennas, where the paths have i.i.d Rayleigh
fading distribution. It was shown that for large signal to
noise ratios (SNR), the capacity behaves asC(SNR) ≈
min(M,N) log(SNR). The multiplexing gain is the number
of degrees of freedom utilized by the transmitted scheme.

For the quasi-static Rayleigh flat-fading channel, Zheng and
Tse [3] characterized the dependence between the diversity
order and the multiplexing gain, by deriving the optimal
tradeoff between diversity and multiplexing, i.e. for each
multiplexing gain found the maximal diversity order. They
showed that the optimal diversity-multiplexing tradeoff (DMT)
can be attained by ensemble of i.i.d Gaussian codes, given
that the block length is greater or equal toN +M − 1. For
this case, the tradeoff curve takes the form of the piecewise
linear function that connects the points(N − l)(M − l),
l = 0, 1, . . . ,min(M,N).
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Space time codes are coding schemes designed for MIMO
systems. There has been an extensive work in this field
[4],[5] [6] and references therein. Some of these works present
schemes that maximize the diversity order, others maximize
the multiplexing gain, and there are also works aimed at
achieving the optimal DMT. In [7], El Gamal et al presented
lattice space time (LAST) codes. These space time codes are
subsets of an infinite lattice, where the lattice dimensionality
equals to the number of degrees of freedom available by the
channel, i.e.min(M,N). By using an ensemble of nested lat-
tices, common randomness, generalized minimum Euclidean
lattice decoding and modulo lattice operation (that in a certain
sense takes into account the finite code book), they showed that
LAST codes can achieve the optimal DMT.

The authors in [7] also derived a lower bound on the
diversity order, for the caseN ≥ M , for LAST codes shaped
into a sphere with regular lattice decoding, i.e. decoding over
the infinite lattice without taking into consideration the finite
codebook. For sufficiently large block length they showed that
d(r) ≥ (N − M + 1)(M − r) where r is the multiplexing
gain and the lattice dimension isM . Taherzadeh and Khandani
showed in [8] that this is also an upper bound on the diversity
order of any LAST code shaped into a sphere and decoded
with regular lattice decoding. These results show that LAST
codes together with regular lattice decoding are suboptimal
compared to the optimal DMT of power constrained constel-
lations.

Infinite constellations (IC’s) are structures in the Euclidean
space that have no power constraint. In [9], Poltyrev analyzed
the performance of IC’s over the additive white Gaussian noise
(AWGN) channel. In this work we first extend the definitions
of diversity order and multiplexing gain to the case where
there is no power constraint. We also introduce a new term:
the average number of dimensions per channel use, which is
essentially the IC dimension divided by the number of channel
uses. Then we extend the methods used in [9] in order to
derive an upper bound on the diversity of any IC with certain
average number of dimensions per channel use, as a function
of the multiplexing gain. It turns out that for a given number
of dimensions per channel use, the diversity is a straight line
as a function of the multiplexing gain that depends on the IC
number of transmit and receive antennas. This analysis holds
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for any M and N , and also for lattices and regular lattice
decoding. We also find the average number of dimensions per
channel use for which the upper bounds coincide with the
optimal DMT of finite constellations. Finally, we show that for
the aforementioned average number of dimensions per channel
use, together with sufficient amount of channel uses, there
exist sequences of lattices that attain different segmentsof the
optimal DMT with regular lattice decoding, i.e. for each point
in the DMT of [3] there exists a lattice sequence of certain
dimension that achieves it with regular lattice decoding.

This work gives a framework for designing lattices for
multiple-antenna channels using regular lattice decoding. It
also shows the fundamental and natural connection between
the IC dimension and its optimal diversity order. For instance,
it is shown that for the caseM = N = 2, the maximal
diversity order of 4 can be achieved (with regular lattice
decoding) by a lattice that has at most4

3 average number of
dimensions per channel use. On the other hand the Alamouti
scheme [10], that also has maximal diversity order of4,
utilizes only a single dimension per channel use in this set up.
Hence, there is still a room for improvement of1

3 dimensions
per channel use, while attaining full diversity.

The outline of the paper is as follows. In section II basic
definitions for the fading channel and IC’s are given. Section
III presents a lower bound on the average decoding error
probability of IC for any channel realization, and an upper
bound on the diversity order. An upper bound on the error
probability for each channel realization, a transmission scheme
that attains the best diversity order and some averaging argu-
ments regarding the achievable diversity order of IC’s, areall
presented on section IV.

II. BASIC DEFINITIONS

We refer to the countable setS = {s1, s2, . . . } in Cn as
infinite constellation (IC). Letcubel(a) ⊂ Cn be a (probably
rotated) l-complex dimensional cube (l ≤ n) with edge
of length a centered around zero. An ICSl is l-complex
dimensional if there exists rotatedl-complex dimensional cube
cubel(a) such thatSl ⊂ lima→∞ cubel(a) and l is minimal.
M(Sl, a) = |Sl

⋂
cubel(a)| is the number of points of the IC

Sl insidecubel(a). In [9], the n-complex dimensional IC den-
sity for the AWGN channel was defined as the upper limit (the
limit supremum) of the ratioγG = lim supa→∞

M(S,a)
a2n and

the volume to noise ratio (VNR) was given asµG =
γ
− 1

n
G

2πeσ2 .
The Voronoi region of a pointx ∈ Sl, denoted asV (x), is

the set of points inlima→∞ cubel(a) closer tox than to any
other point in the IC. The effective radius of the pointx ∈ Sl,
denoted asreff(x), is the radius of thel-complex dimensional
ball that has the same volume as the Voronoi region, i.e.reff(x)
satisfies

|V (x)| = πlr2·leff (x)

Γ(l + 1)
. (1)

We consider a quasi static flat-fading channel withM
transmit andN receive antennas. We assume for this MIMO
channel perfect channel knowledge at the receiver and no

channel knowledge at the transmitter. The channel model is
as follows:

y
t
= H · xt + ρ−

1
2nt t = 1, . . . , T (2)

wherex = {x1, . . . , xT } ∈ Sl ⊂ CMT belongs to the infinite
constellation with densityγtr = lim supa→∞

M(Sl,a)
a2·l

(
where

a2·l is the volume ofcubel(a)
)
, nt ∼ CN(0, 2

2πeIN ) where
CN denotes complex-normal,IN is theN -dimensional unit
matrix, andy

t
∈ CN . H is the fading matrix withN rows

andM columns wherehi,j ∼ CN(0, 1), 1 ≤ i ≤ N , 1 ≤ j ≤
M , and ρ−

1
2 is a scalar that multiplies each element ofnt,

whereρ plays the role of averageSNR in the receive antenna
for power constrained constellations that satisfy1

T
E{‖x‖2} ≤

2M
2πe .

By definingHex as anNT ×MT block diagonal matrix,
where each block on the diagonal equalsH , nex = ρ−

1
2 ·

{n1, . . . , nT } ∈ CNT and y
ex

∈ CNT we can rewrite the
channel model in (2) as

y
ex

= Hex · x+ nex. (3)

In the sequel we useL to denotemin(M,N). We define as√
λi, 1 ≤ i ≤ L the real valued, non-negative singular values

of H . We assume
√
λL ≥ · · · ≥

√
λ1 > 0. Our analysis is

done for large values ofρ (large VNR at the transmitter). We
state thatf(ρ)≥̇g(ρ) whenlimρ→∞ − f(ρ)

ln(ρ) ≤ − g(ρ)
ln(ρ) , and also

define≤̇, =̇ in a similar manner by substituting≤ with ≥, =
respectively.

We now turn to the IC definitions in the transmitter. We
define the average number of dimensions per channel use as
the IC dimension divided by the number of channel uses. We
denote the average number of dimensions per channel use by
K. Let us consider a KT-complex dimensional sequence of
IC’s SKT (ρ), whereK ≤ L, andT is the number of channel
uses. First we defineγtr = ρrT as the density ofSKT (ρ) in
the transmitter. The IC multiplexing gain is defined as

MG(r) = lim
ρ→∞

1

T
logρ(γtr + 1) = lim

ρ→∞

1

T
logρ(ρ

rT + 1).

(4)
Note thatMG(r) = max(0, r). For 0 ≤ r ≤ K, r = MG(r)
has the meaning of multiplexing gain. Roughly speaking,
γtr = ρrT gives us the number of points ofSKT (ρ) within
the KT-complex dimensional regioncubeKT (1). In order to
get the multiplexing gain, we normalizing the exponent of the
number of points withincubeKT (1), rT , by the number of
channel uses -T . Note that the IC multiplexing gain,r, can
be directly translated to finite constellation multiplexing gain
r by considering the IC points within a shaping region. The
VNR in the transmitter is

µtr =
γ
− 1

KT

tr

2πeσ2
= ρ1−

r
K (5)

whereσ2 = ρ−1

2πe is each dimension noise variance. Now we
can understand the role of the multiplexing gain for IC’s.
The AWGN variance decreases asρ−1, where the IC density
increases asρrT . When r = 0 we get constant IC density



as a function ofρ, where the noise variance decreases, i.e.
we get the best error exponent. In this case the number of
words withincubeKT (1) remains constant as a function ofρ.
On the other hand, whenr = K, we get VNRµtr = 1, and
from [9] we know that it inflicts average error probability that
is bounded away from zero. In this case, the increase in the
number of IC words withincubeKT (1) is at maximal rate.

Now we turn to the IC definitions in the receiver. First
we define the setHex · cubeKT (a) as the multiplication of
each point incubeKT (a) with the matrixHex. In a similar
mannerS

′

KT = Hex ·SKT . The setHex ·cubeKT (a) is almost
surelyKT -complex dimensional (whereK ≤ L) and in this
caseM(SKT , a) = |SKT

⋂
cubeKT (a)| = |S′

KT

⋂
(Hex ·

cubeKT (a))|. We define the receiver density as

γrc = lim sup
a→∞

M(SKT , a)

V ol(Hex·cubeKT (a))

i.e., the upper limit of the ratio of the number of IC words
in Hex·cubeKT (a), and the volume ofHex·cubeKT (a). The
volume of the setHex · cubeKT (a) is smaller thana2KT ·
λT
L . . . λT

L−B+1·λ
βT
L−B, assumingK = B+β whereB ∈ N and

0 < β ≤ 1, i.e. the volume is smaller than the multiplication
of theB + 1 strongest singular values, raised to the power of
the maximal amount of channel uses each can take place in.
Hence we get

γrc ≥ ρrTλ−T
L . . . λ−T

L−B+1 · λ
−βT
L−B (6)

and the receiver VNR is

µrc ≤ ρ1−
r
K · λ

1
K

L . . . λ
1
K

L−B+1 · λ
β
K

L−B. (7)

Note that forN ≥ M and K = M we get γrc = ρrT ·∏M
i=1 λ

−T
i andµrc = ρ1−

r
M ·∏M

i=1 λ
1
M

i . The average decoding
error probability over the IC points ofSKT (ρ), for a certain
channel realizationH , is defined as

Pe(H, ρ) = lim sup
a→∞

∑
x
′∈S

′

KT

⋂
(Hex·cubeKT (a)) Pe(x

′

, H, ρ)

M(SKT , a)
(8)

wherePe(x
′

, H, ρ) is the error probability ofx
′

. The average
decoding error probability ofSKT (ρ) over all channel realiza-
tions isPe(ρ) = EH{Pe(H, ρ)}. Hence thediversity order

equals
d = − lim

ρ→∞
logρ(Pe(ρ)) (9)

III. U PPERBOUND ON THE DIVERSITY ORDER

In this section we derive an upper bound on the diversity or-
der of any IC with average number of dimensions per channel
useK and any value ofT , M andN . We begin by deriving
a lower bound on the average decoding error probability of
SKT (ρ) for each channel realization. As in [3] and [7], we
also defineλi = ρ−αi , 1 ≤ i ≤ L. For very largeρ, the
Wishart distribution is of the formρ−

∑L
i=1(|N−M|+2i−1)αi

and we can assume0 ≤ αL ≤ · · · ≤ α1. By assigning in
(6), (7) respectively, we can write

γrc ≥ ρT (r+
∑B−1

i=0 αL−i+βαL−B)

and
µrc ≤ ρ1−

1
K

(r+
∑B−1

i=0 αL−i+βαL−B).

Theorem 1. For any KT -complex dimensional IC SKT (ρ)
with transmitter density γtr = ρrT and channel realization
α = (α1, . . . , αL), we have the following lower bound on the
average decoding error probability for 0 ≤ r ≤ K

Pe(H, ρ) >
C(KT )

4
e−µrc·A(KT )+(KT−1) ln(µrc)

where A(KT ) = e · Γ(KT + 1)
1

KT and C(KT ) =
e
KT− 3

2 Γ(KT+1)
KT−1
KT

2·Γ(KT ) .

Proof: We divide the proof into 2 parts. In the first part
we prove the result for lattices, that constitute a symmetric
structure for which the Voronoi regions of different lattice
points are identical. In the second part we prove the result for
IC’s with receiver densityγrc and no restrictions other than
that on the IC structure. As the second part proof is somewhat
more involved, we present it on appendix A.

We begin by proving the result for lattices. Lattices con-
stitute a discrete subgroup of the Euclidean space, with the
ordinary vector addition operation. Consider aKT -complex
dimensional lattice,S

′

KT (ρ), in the receiver with densityγrc.
The lattice points have identical Voronoi regions up to a
translate. Hence, the volume of each Voronoi region equals

|V (x)| = 1

γrc
∀x ∈ S

′

KT (ρ).

According to the definition of the effective radius in (1), weget
that reff(x) = reff(γrc), ∀x ∈ S

′

KT (ρ). Note that in lattices
the maximum-likelihood (ML) decoding error probability is
identical for all lattice points, i.e. the average and maximal
error probabilities are identical. It has been proven in [9], [11]
that the error probability of any lattice point in the receiver
fulfils

Pe
S

′

KT
> Pr(‖ñex‖ ≥ reff(γrc))

wherePe
S

′

KT
is the ML decoding error probability of any

lattice point, and̃nex is the effective noise in theKT -complex
dimensional hyperplane whereS

′

KT (ρ) resides. We find an
explicit expression to the lower bound

Pr
(
‖ñex‖ ≥ reff(γrc)

)
> Pr

(
‖ñex‖ ≥ reff(

γrc

2
)
)
>

∫ r2eff+σ2

r2
eff

rKT−1e−
r

2σ2

σ2KT 2KTΓ(KT )
dr ≥ r2KT−2

eff e−
r2eff
2σ2

σ2KT−22KTΓ(KT )
√
e
.

(10)

By assigningr2eff = (2·Γ(KT+1)
γrcπKT )

1
KT we get

Pe
S

′
KT

> C(KT ) · e−
γ
− 1

KT
rc
2πeσ2 A(KT )+(KT−1) ln(

γ
− 1

KT
rc
2πeσ2 )

and by assigningµrc =
γ
− 1

KT
rc

2πeσ2 we get

Pe
S

′

KT
>

C(KT )

4
· e−µrcA(KT )+(KT−1) ln(µrc). (11)



Note that in (10) we lower bounded the error probability with
reff(

γrc

2 ) instead ofreff(γrc), and also in (11) we multiplied
by 1

4 , in order to be consistent with the general lower bound
for IC’s. For lattices we havePe(H, ρ) = Pe

S
′
KT

. Hence this
concludes the proof. We give the proof for general IC’s in
appendix A.

Next, we would like to use this lower bound to average
over the channel realizations and get an upper bound on the
diversity order.

Theorem 2. The diversity order of any KT -complex dimen-
sional sequence of IC’s SKT (ρ), with K average number of
dimensions per channel use, is upper bounded by

dKT (r) ≤ d∗K(r) = M ·N(1− r

K
)

for 0 < K ≤ M·N
N+M−1 , and

dKT (r) ≤ d∗K(r) = (M − l)(N − l)
K

K − l
(1− r

K
)

for (M−l+1)(N−l+1)
N+M−1−2(l−1) + l − 1 < K ≤ (M−l)(N−l)

N+M−1−2·l + l and
l = 1, . . . , L− 1. In all of these cases 0 ≤ r ≤ K .

Proof: For any IC with VNRµrc, assigningµ
′

rc > µrc

in the lower bound from Theorem 1 also gives a lower bound
on the error probability

Pe(H, ρ) >
C(KT )

4
e−µ

′

rc·A(KT )+(KT−1) ln(µ
′

rc).

It results from the fact that inflating the IC into an IC
with VNR µ

′

rc must decrease the error probability, where
C(KT )

4 e−µ
′

rc·A(KT )+(KT−1) ln(µ
′

rc) is a lower bound on the
error probability of any IC with VNRµ

′

rc. Hence, for the
caseµrc ≤ 1 we can lower bound the error probability by
assigning1 in the lower bound and getC(KT )

4 e−A(KT ), i.e.
for µrc ≤ 1 the average decoding error probability is bounded
away from 0 for any value ofρ. We can give the eventµrc ≤ 1
the interpretation of outage event.

We would like to set a lower bound for the error prob-
ability for each channel realizationα, which we denote by
PLB
e (ρ, α). We know thatµrc ≤ ρ1−

1
K

(r+
∑B−1

i=0 αL−i+βαL−B).
For the case

∑B−1
i=0 αL−i + βαL−B < K − r, we take

PLB
e (ρ, α) =

C(KT )

4
e−L(ρ,α)·A(KT )+(KT−1) ln(L(ρ,α))

whereL(ρ, α) = ρ1−
1
K

(r+
∑B−1

i=0 αL−i+βαL−B) > 1. For the
case

∑B−1
i=0 αL−i + βαL−B ≥ K − r we get thatµrc ≤ 1,

and we take

PLB
e (ρ, α) =

C(KT )

4
e−A(KT ).

In order to find an upper bound on the diversity order, we
would like to averagePLB

e (ρ, α) over the channel realizations.
In our analysis we consider large values ofρ, and so we
calculate

Pe(ρ)>̇

∫

α≥0

PLB
e (ρ, α) · ρ−

∑L
i=1(|N−M|+2i−1)αidα (12)

whereα ≥ 0 signifies the fact thatα1 ≥ · · · ≥ αL ≥ 0. By
definingA = {α|∑B−1

i=0 αL−i + βαL−B < K − r;α ≥ 0}
andA = {α|

∑B−1
i=0 αL−i+βαL−B ≥ K− r;α ≥ 0} we can

split (12) into 2 terms

Pe(ρ)>̇

∫

α∈A

PLB
e (ρ, α) · ρ−

∑L
i=1(|N−M|+2i−1)αidα

+

∫

α∈A

PLB
e (ρ, α) · ρ−

∑L
i=1(|N−M|+2i−1)αidα. (13)

Hence, we get

Pe(ρ)>̇

∫

α∈A

PLB
e (ρ, α) · ρ−

∑L
i=1(|N−M|+2i−1)αidα. (14)

In a similar manner to [3], [7], for very largeρ, we approx-
imate the average by finding the most dominant exponential
term in the integral, i.e. We would like to find the minimal
value of

lim
ρ→∞

− logρ(P
LB
e (ρ, α) · ρ−

∑L
i=1(|N−M|+2i−1)αi)

for the caseα ∈ A. For α ∈ A, we get thatPLB
e (ρ, α) is

bounded away from 0 for any value ofρ. Hence, in order
to find the most dominant error event we would like to find
minα

∑L
i=1(|N − M | + 2i − 1)αi given thatα ∈ A. The

minimal value is achieved for the case where
∑B−1

i=0 αL−i +
βαL−B = K − r andα ≥ 0. Hence, for anyK ≤ L we state
that

dKT (r) ≤ min
α

L∑

i=1

(|N −M |+ 2i− 1)αi, 0 ≤ r ≤ K

(15)
where

∑B−1
i=0 αL−i+ βαL−B = K − r andα1 ≥ · · · ≥ αL ≥

0. Basically this optimization problem is a linear programming
problem whose solution is as follows. For0 < K ≤ M·N

N+M−1
the optimization problem solution isαi = 1− r

K
, i = 1, . . . , L.

For (M−l+1)(N−l+1)
N+M−1−2(l−1) + l− 1 < K ≤ (M−l)(N−l)

N+M−1−2·l + l and l =
1, . . . , L− 1 the optimization problem solution isαL = · · · =
αL−l+1 = 0 and αL−l = · · · = α1 = K−r

K−l
. By assigning

the optimization problem solution, we get the desired upper
bound. The optimization problem is solved on appendix B.

From Theorem 2 we get an upper bound on the diversity or-
der by assuming transmission of theKT complex dimensions
over theB + 1 strongest singular values. This assumption is
equivalent to assumingbeamforming which may improve the
coding gain, but does not increase the diversity order. This
assumption allowes us to derive a ower nound on the average
decoding error probability. However, we still get maximal
diversity order ofMN in this case.

Let us consider as an illustrative example the case ofM =
N = 2. In this case, for0 < K ≤ 4

3 we getd∗K(r) = 4(1− r
K
).

For 4
3 < K ≤ 2 we getd∗k(r) =

K
K−1 (1 − r

K
). In both cases

0 ≤ r ≤ K. For this set up we have 2 singular values and
so α1 ≥ α2 ≥ 0. The optimization problem is of the form
minα≥0 α1 + 3α2, where for0 < K ≤ 1 the constraint is
βα2 = K−r, and for1 < K ≤ 2 the constraint isα2+βα1 =
K − r. For the case0 < K < 4

3 the optimization problem



solution is α1 = α2 = 1 − r
K

, i.e. in this case the most
dominant error event occurs when both singular values are
very small. For the caseK = 4

3 the constraint is of the form
α2 + α1

3 = 4
3 − r, and the optimization problem solution is

achieved for bothα1 = α2 = 1− 3r
4 andα2 = 0, α1 = 4−3r.

For the case43 < K ≤ 2 the optimization problem solution
is achieved forα2 = 0, α1 = K−r

K−1 , i.e. one strong singular
value and another very weak singular value.
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Fig. 1. The diversity order as a linear function of the multiplexing gainr
for M = 4, N = 3 andK = 1, 2, 2.5 and3.

Corollary 1. For 0 < K ≤ M·N
N+M−1 we get d∗K(0) = MN .

For (M−l+1)(N−l+1)
N+M−1−2(l−1) + l − 1 < K ≤ (M−l)(N−l)

N+M−1−2·l + l, l =

1, . . . , L− 1 we get d∗K(l) = (M − l)(N − l).

Proof: The proof is straight forward fromd∗K(r) proper-
ties.

From Corollary 1 we get that the range ofK can be divided
into segments, where for each segment we have a set of
straight lines, that are all equal at a certain integer point.
Note that at these points, we get the same values as the finite
constellations optimal DMT.

Corollary 2. In the range l ≤ r ≤ l+1, the maximal possible
diversity order is achieved at dimension Kl =

(M−l)(N−l)
N+M−1−2·l + l

and gives

d∗Kl
(r) = (M − l)(N − l)

Kl

Kl − l
(1 − r

Kl

)

= (M − l)(N − l)− (r − l)(N +M − 2 · l − 1)

where l = 0, . . . , L− 1.

Proof: The proof is straight forward fromd∗K(r) proper-
ties.

From Corollary 2 we can see thatd∗Kl
(l) = (M − l)(N − l)

andd∗Kl
(l+1) = (M − l− 1)(N − l− 1). We also know that

d∗Kl
(r) is a straight line. Also, the finite constellations optimal

DMT consists of a straight line in the rangel ≤ r ≤ l+1, that
equals(N− l)(M− l) whenr = l and(M− l−1)(N− l−1)
when r = l + 1. Hence, in the rangel ≤ r ≤ l + 1 for
Kl =

(M−l)(N−l)
N+M−1−2·l + l, we get an upper bound that equals to

the optimal DMT of finite constellations presented in [3]. As

for eachl = 0, . . . , L− 1, we have suchKl, taking

max
0≤K≤L

d∗K(r) 0 ≤ r ≤ L

gives us the optimal DMT of finite constellations.
Figure 1 illustrates the properties ofd∗K(r) presented in

Corrolaries 1, 2. We take the example ofM = 4, N = 3. For
0 ≤ K ≤ 2 we get upper bounds that have diversity order
12 for r = 0. We can see that in the range0 ≤ r ≤ 1, the
upper bound ofK = 2 is maximal and equals to the finite
constellations optimal DMT. In the range2 < K ≤ 2.5 we
can see that the upper bounds have the same diversity order6
at r = 1. In the range1 ≤ r ≤ 2, the upper bound ofK = 2.5
is maximal and equals to the finite constellations optimal DMT
in this range. For2.5 < K ≤ 3, the upper bounds equal to2
at r = 2. In the range2 < r ≤ 3, the upper bound ofK = 3 is
maximal and again equals to the finite constellations optimal
DMT in this range.

0 0.5 1 1.5 2 2.5 3
6 

7 

8 

9 

10

11

12

13

IC dimension − K

d(
K

)

Fig. 2. d∗K(0) as a function of the IC dimensions per channel useK, for
M = 4, N = 3.

On figure 2 we present the maximal diversity order that can
be attained for different average number of dimensions per
channel use, i.e. the upper bound on the diversity order for
r = 0, d∗K(0), where0 ≤ K ≤ L. We present as an example
the case whereM = 4, N = 3. For this case, in the range
0 ≤ K ≤ 2 we getd∗K(0) = 12. It coincides with the result
presented on figure 1, where we showed that in this range the
straight lines have the same value forr = 0. Hence, for IC’s,
one can use up to 2 average number of dimensions per channel
use without compromising on the diversity order. Starting from
K ≥ 2, the tradeoff starts to kick-in and the maximal diversity
order starts to reduce as we increase the average number of
dimensions per channel use. Also note that forK = 3 the
diversity order is6 whenr = 0.

IV. ATTAINING THE BEST DIVERSITY ORDER

In this section we show that the upper bound derived in
section III is achievable by a sequence of IC’s in general and
lattices in particular. First we present a transmission scheme
for any M , N , Kl =

(M−l)(N−l)
N+M−1−2·l + l and Tl = N + M −

1 − 2 · l where l = 0, . . . , L − 1, and as previously defined
L = min(M,N). Then we introduce the effective channel of
the transmission scheme. Afterwards we extend the methods



presented in [9], in order to derive an upper bound on the
average decoding error probability of ensemble of IC’s, for
each channel realization. By averaging the upper bound over
the channel realizations, we find the achievable DMT of IC’s at
these dimensions and show it coincides with the optimal DMT
of finite constellations. Finally, we discuss peak to average
properties of the transmission scheme, and show that there
exists a single sequence of IC’s that attains the optimal DMT
of finite constellations.

A. The Transmission Scheme

The transmission matrixGl, l = 0, . . . , L− 1, hasM rows
that represent the transmission antennas1, . . . ,M , andTl =
N+M−1−2·l columns that represent the number of channel
uses.

We begin by describing the transmission matrix structure in
general for anyM andN .

1) For N ≥ M and KM−1 = M(N−M+1)
N−M+1 = M : the

matrix GM−1 hasN −M + 1 columns (channel uses).
On each channel use, transmit differentM symbols on
antennas1, . . . ,M .

2) For M > N and KN−1 = N(M−N+1)
M−N+1 = N :

the matrix GN−1 has M − N + 1 columns. On the
first column transmit symbolsx1, . . . , xN on antennas
1, . . . , N and on theM−N+1 column transmit symbols
xN(M−N)+1, . . . , xN(M−N+1) on antennasM − N +
1, . . . ,M .

3) ForKl, l = 0, . . . , L− 2: the matrixGl hasM +N −
1 − 2 · l columns. We add toGl+1, the transmission
scheme ofKl+1, two columns in order to getGl. In the
first added column transmitl + 1 symbols on antennas
1, . . . , l + 1. On the second added column transmit
different l + 1 symbols on antennasM − l, . . . ,M .

Example: M = 4, N = 3. In this case the transmission
scheme forK = 3, 2.5 and2 (G2, G1 andG0 respectively)
is as follows:



x1 0
x2 x4

x3 x5

0 x6︸ ︷︷ ︸
K2=

6
2

x7 0
x8 0
0 x9

0 x10

︸ ︷︷ ︸
K1=

10
4

x11 0
0 0
0 0
0 x12




︸ ︷︷ ︸
K0=

12
6

. (16)

B. The Effective Channel

Next we define the effective channel matrix induced by the
transmission scheme. In accordance with the channel model
from (2), the multiplicationH · Gl yields a matrix withN
rows andTl columns, where each column equals toH · xt,
t = 1 . . . Tl, as in (2). We are interested in transmittingKlTl-
complex dimensional IC withKlTl complex symbols. Hence,
in the proposed transmission scheme,Gl has exactlyKlTl

non-zero complex entries that represent theKlTl-complex
dimensional IC withinCMTl . For each column ofGl, denoted

by g
i
, i = 1 . . . Tl, we define the effective channel thatg

i
sees

asĤi. It consists of the columns ofH that correspond to the
non-zero entries ofg

i
, i.e. H · g

i
= Ĥi · ĝi, whereĝ

i
equals

the non-zero entries ofg
i
. As an example assume without loss

of generality that the firstli entries ofg
i

are not zero. In this

caseĤi is anNxli matrix equals to the firstli columns ofH .
In accordance with (3),H(l)

eff is anNTlxKlTl block diagonal
matrix consisting ofTl blocks. Each block corresponds to
the multiplication ofH with different column ofGl, i.e. Ĥi

is the i′th block of H(l)
eff . Note that in the effective matrix

NTl ≥ KlTl.
We would like to elaborate on the structure ofH

(l)
eff blocks.

For this reason we denote the columns ofH as hi, i =
1, . . . ,M .

1) The case whereN ≥ M . For this case the transmission
scheme hasN +M − 1− 2 · l columns. The firstN −
M + 1 columns ofGl, g1, . . . , gN−M+1

, containM ·
(N −M + 1) different complex symbols, i.e. there are
no zero entries in these columns. Hence, in this case the
first N −M + 1 blocks ofH(l)

eff are

Ĥi = H i = 1, · · · , N −M + 1. (17)

After the firstN −M + 1 columns we haveM − 1− l

pairs of columns. For each pair we have

ĤN−M+2k = {h1, . . . , hM−k} (18)

and
ĤN−M+2k+1 = {hk+1, . . . , hM} (19)

wherek = 1, . . . ,M − 1− l.
2) The case whereM > N . Again the transmission scheme

hasN +M − 1− 2 · l columns. By the definition of the
first M −N + 1 columns ofGl, we get that

Ĥi = {hi, . . . , hN+i−1} i = 1, · · · ,M −N + 1.
(20)

We have additionalN − 1 − l pairs of columns inGl.
For each of these pairs we get

ĤM−N+2k = {h1, . . . , hN−k} (21)

and

ĤM−N+2k+1 = {hM−N+k+1, . . . , hM} (22)

wherek = 1, . . . , N − 1− l.

Example: considerM = 4, N = 3 as presented in (16). In this
casel = 0, 1, 2 and we haveK2 = 3, K1 = 2.5 andK0 = 2
respectively.

1) K2 = 3: H
(2)
eff is generated from the multiplication

of the 3x4 matrix H with the first 2 columns of the
transmission matrix. In this caseH(2)

eff is a 6x6 block
diagonal matrix, consisting of 2 blocks. Each block
is a 3x3 matrix. We get thatĤ1 = {h1, h2, h3} and
Ĥ2 = {h2, h3, h4}.

2) K1 = 10
4 : H

(1)
eff is a 12x10 block diagonal matrix

consisting of 4 blocks. The first 2 blocks are identical



to the blocks ofH(2)
eff . The additional 2 blocks (multipli-

cation with columns 3-4) are3x2 matrices. We get that
Ĥ3 = {h1, h2} andĤ4 = {h3, h4}.

3) K0 = 2: H(0)
eff consists of 6 blocks. In this case the last

2 blocks are3x1 vectors. We get that̂H5 = h1 and
Ĥ6 = h4.

We presentH(0)
eff of our example in equation (23). Note that

hi ∈ C3 for 1 ≤ i ≤ 4, and0 is a 3x1 vector.

From the sequential structure ofH
(l)
eff blocks (17)-(19), (20)-

(22) it is easy to see that when two columns ofH occur in a
certain block ofH(l)

eff , the columns ofH between them must
also occur in the same block, i.e. ifh1, h5 occur in a certain
block, thenh2, h3, h4 also occur in the same block. Next we
prove a property of the transmission schemeGl, that relates to
the number of occurrences of the columns ofH in the blocks
of H

(l)
eff . For each set of columns inH , we give an upper

bound on the amount of its appearances in different blocks.

Lemma 1. Consider the transmission scheme Gl, l =
0, . . . L − 1. In case 0 ≤ i − j < L, the columns hj , . . . , hi

may occur together in N − i + j blocks of H(l)
eff at most. In

case i − j ≥ L they can not occur together in any block of
H

(l)
eff .

Proof: See appendix C.

C. Upper Bound on The Error Probability

Next we would like to derive an upper bound on the
average decoding error probability of ensemble ofKlTl-
complex dimensional IC, for each channel realization. We
define |H(l)†

eff H
(l)
eff | = ρ−

∑KlTl
i=1 ηi , where ρ−

ηi
2 is the i′th

singular value ofH(l)
eff , 1 ≤ i ≤ KlTl. We also define

η = (η1, . . . , ηKlTl
)T . Note thatNTl ≥ KlTl.

Theorem 3. There exists a sequence of KlTl-complex di-
mensional IC’s, with channel realization H

(l)
eff and receiver

VNR µrc = ρ
1− r

Kl
−

∑KlTl
i=1

ηi
KlTl , that has average decoding error

probability

Pe(H
(l)
eff , ρ) = Pe(η, ρ) ≤ D(KlTl)ρ

−Tl(Kl−r)+
∑KlTl

i=1 ηi

= D(KlTl)ρ
−Tl(Kl−r) · |H(l)†

eff H
(l)
eff |−1

where D(KlTl) is a constant independent of ρ, and ηi ≥ 0
for every 1 ≤ i ≤ KlTl.

Proof: We base our proof on the techniques developed
by Poltyrev [9] for the AWGN channel. However, the channel
considered here is colored. In spite of that, we show that what
affects the average decoding error probability is the singular
values product, which is encapsulated by the receiver VNR,
µrc. This observation enables us to facilitate this colored
channel analysis.

Based on [9] we have the following upper bound on the
maximum-likelihood (ML) decoding error probability of each

KlTl-complex dimensional IC pointx
′ ∈ SKlTl

Pe(x
′

) ≤ Pr(‖ñex‖ ≥ R)+
∑

l∈Ball(x′
,2R)

⋂
SKlTl

,l 6=x
′

Pr(‖l − x
′ − ñex‖ < ‖ñex‖) (24)

whereBall(x
′

, 2R) is a KlTl-complex dimensional ball of
radius2R centered aroundx

′

, and ñex is the effective noise
in the KlTl-complex dimensional hyperplane where the IC’s
resides. Note that the second term in (24) represents the
pairwise error probability to points withinBall(x

′

, 2R), i.e.
the decision region is at distanceR at most.

Next we upper bound the average decoding error probability
of an ensemble of constellations drawn uniformly within
cubeKlTl

(b). Each code-book contains⌊γtrb2KlTl⌋ points,
where each point is drawn uniformly withincubeKlTl

(b). In
the receiver, the random ensemble is uniformly distributed
within {H(l)

eff · cubeKlTl
(b)}. Let us consider a certain point,

x
′ ∈ {H(l)

eff · cubeKlTl
(b)}, from the random ensemble in the

receiver. We denote the ring aroundx
′

by Ring(x
′

, i∆) =
Ball(x

′

, i∆) \ Ball(x
′

, (i − 1)∆). The average number of
points withinRing(x

′

, i∆) of the random ensemble is

Av(x
′

, i∆) = γrc|H(l)
eff · cubeKlTl

(b)
⋂

Ring(x
′

, i∆)|

≤ γrc|Ring(x
′

, i∆)| ≤ γrcπ
KlTl2KlTl

Γ(KlTl + 1)
(i∆)2KlTl−1∆ (25)

whereγrc = ρrTl+
∑KlTl

i=1 ηi . By using the upper bounds on
the error probability (24), and the average number of points
within the rings (25), we get for a certain channel realization
the following upper bound on the average decoding error
probability of the finite constellations ensemble, at pointx

′

PFC
e (x

′

, ρ, η) ≤ Pr(‖ñex‖ ≥ R)+

γrcQ(KlTl)

⌈ 2R
∆ ⌉∑

i=1

Pr(ñex,1 >
(i− 1)∆

2
) · (i∆)2KlTl−1∆

(26)

whereQ(KlTl) =
πKlTl2KlTl

Γ(KlTl+1) , andñex,1 is the first component
of ñex (the pairwise error probability has scalar decision
region). By taking∆ → 0 we get

PFC
e (x

′

, ρ, η) ≤ Pr(‖ñex‖ ≥ R)+

γrcQ(KlTl)

∫ 2R

0

Pr(ñex,1 >
x

2
)x2KlTl−1dx. (27)

Note that this upper bound applies for any value ofR ≥ 0 and
b, and does not depend onx

′

, i.e.PFC
e (x

′

, ρ, η) = PFC
e (ρ, η).

Now we divide the channel realization into 2 subsets:
A = {η | ∑KlTl

i=1 ηi ≤ Tl(Kl − r), ηi ≥ 0}, where η =

(η1, . . . , ηKlTl
) andA = {η | ∑KlTl

i=1 ηi > Tl(Kl − r), ηi ≥
0}. For each set we upper bound the error probability. We
begin with the caseη ∈ A. For this case we upper bound the
terms in (27) and find an upper bound on the error probability

as a function of the receiver VNR,µrc = ρ
1− r

Kl
−

∑KlTl
i=1

ηi
KlTl .



H
(0)
eff =




h1 h2 h3 0 0 0
0 0 0 h2 h3 h4

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0
0 0 0 0
h1 h2 0 0
0 0 h3 h4

0 0 0 0
0 0 0 0

0 0
0 0
0 0
0 0
h1 0
0 h4




(23)

We begin by upper bounding the integral of the second term
in (27). Note that

Pr(ñex,1 ≥ x

2
) ≤ e−

x2

8σ2 .

Hence, the integral of the second term in (27) can be upper
bounded by

σ2KlTlΓ(KlTl)2
3KlTl−2

∫ 2R

0

e−
x2

8σ2 x2KlTl−1

σ2KlTlΓ(KlTl)23KlTl−2
dx

where
∫ 2R

0
e
− x2

8σ2 x2KlTl−1

σ2KlTlΓ(KlTl)2
3KlTl−2 dx = Pr(‖ñex‖ ≤ 2R) ≤ 1.

As a result we get the following upper bound
∫ 2R

0

Pr(ñex,1 >
x

2
)x2KlTl−1dx ≤ σ2KlTlΓ(KlTl)2

3KlTl−2.

(28)
By assigning this upper bound in the second term of (27) we
get

γrcQ(KlTl)

∫ 2R

0

Pr(ñex,1 >
x

2
)x2KlTl−1dx

≤ γrc
√
π
2KlTl2KlTlσ

2KlTlΓ(KlTl)2
3KlTl−2

Γ(KlTl + 1)

= ρ−Tl(Kl−r)+
∑KlTl

i=1 ηi · 4KlTl

2eKlTl
. (29)

In the next step we upper boundPr(‖ñex‖ ≥ R), the first
term in (27). We choose

R2 = R2
eff =

2KlTl

2πe
γ
− 1

KlTl
rc =

2KlTl

2πe
ρ
− r

Kl
−
∑KlTl

i=1
ηi

KlTl .

For η ∈ A we get that

R2
eff

2KlTl · σ2
= ρ

1− r
Kl

−
∑KlTl

i=1
ηi

KlTl ≥ 1.

By using the upper bounds from [9], we know that for the case
R2

eff

2KlTl·σ2 ≥ 1, Pr(‖ñex‖ ≥ Reff) ≤ e−
R2

eff
2σ2 (

R2
effe

2KlTlσ2 )
KlTl .

Hence we get

Pr(‖ñex‖ ≥ Reff) ≤

e−KlTlρ
1− r

Kl
−

∑KlTl
i=1

ηi
KlTl · ρTl(Kl−r)−

∑KlTl
i=1 ηi · eKlTl . (30)

The fact thatη ∈ A has 2 significant consequences: the VNR
is greater or equal to 1, and asρ increases the maximal VNR in
the set also increases. For very large VNR in the receiver, the
upper bound of the first term, (30), is negligible compared to
the upper bound on the second term, (29). On the other hand,
the set of rather small VNR values is fixed for increasingρ

(the VNR is grater or equal to 1). Hence there must exist a
coefficientD

′

(KlTl) that gives us

PFC
e (ρ, η) ≤ D

′

(KlTl)ρ
−Tl(Kl−r)+

∑KlTl
i=1 ηi (31)

for anyρ andη ∈ A, wherePFC
e (ρ, η) is the average decoding

error probability of the ensemble of constellations, for a certain
channel realizations.

Note that we could also takeR ≥ Reff , as the upper bound
in (29) does not depend onR and the upper bound in (30)
would only decrease in this case. It results from the fact that
we are interested in the exponential behavior of the error
probability, and we consider fixed VNR (as a function ofρ)
as an outage event. This allows us to take cruder bounds than
[9] on (29), that do not depend onR.

For the caseη ∈ A, we get

ρ−Tl(Kl−r)+
∑KlTl

i=1 ηi ≥ 1.

Hence, we can upper bound the error probability forη ∈ A
by 1. We can also upper bound the error probability for this
case by the upper bound from equation (31), as long as we
state thatD

′

(KlT ) ≥ 1. Hence, the upper bound from (31)
applies forηi ≥ 0, 1 ≤ i ≤ KlTl.

Up until now we upper bounded the average decoding
error probability of ensemble of finite constellations. Nowwe
extend those finite constellations into an ensemble of IC’s with
density γtr, and show that the upper bound on the average
decoding error probability does not change. Let us considera
certain finite constellation,C0(ρ, b) ⊂ cubeKlTl

(b), from the
random ensemble. We extend it into IC

IC(ρ,KlTl) = C0(ρ, b) + (b+ b
′

) · Z2KlTl (32)

where without loss of generality we assumed that
cubeKlTl

(b) ∈ CKlTl . In the receiver we have

IC(ρ,KlTl, H
(l)
eff ) = H

(l)
eff · C0(ρ, b) + (b + b

′

)H
(l)
eff · Z2KlTl .

(33)
By extending each finite constellation in the ensemble to IC
according to the method presented in (32), we get new ensem-
ble of IC’s. We would like to setb andb

′

to be large enough
such that the IC’s ensemble average decoding error probability
has the same upper bound as in (31), and density that equals
γrc up to a coefficient. First we would like to set a value
for b

′

. Increasingb
′

decreases the error probability inflicted
by the codewords outside the set{H(l)

eff · C0(ρ, b)}. Without
loss of generality, we upper bound the error probability of the
wordsx ∈ {H(l)

eff ·C0(ρ, b)} ⊂ IC(ρ,KlTl, H
(l)
eff ), denoted by



P IC
e (H

(l)
eff · C0). Due to the tiling symmetry,P IC

e (H
(l)
eff · C0)

is also the average decoding error probability of the entireIC.
We begin withη ∈ A. For this case, we upper bound the IC
error probability in the following manner

P IC
e (H

(l)
eff · C0) ≤ PFC

e (H
(l)
eff · C0) + Pe

(
H

(l)
eff · (IC \ C0)

)

wherePFC
e (H

(l)
eff · C0) is the error probability of the finite

constellation{H(l)
eff · C0}, and Pe

(
H

(l)
eff · (IC \ C0)

)
is the

average decoding error probability to points in the set{H(l)
eff ·

(IC \ C0)}. For the caseη ∈ A, we know that0 ≤ ηi ≤
Tl(Kl − r). Hence, the constriction caused by the channel in
each dimension can not be smaller thanρ−

Tl
2 (Kl−r). As a

result, for anyx1 ∈ {H(l)
eff · C0} andx2 ∈ {H(l)

eff · (IC \ C0)}
we get ‖x1 − x2‖ ≥ 2b

′ · ρ−
Tl
2 (Kl−r). By choosingb

′

=√
KlTl

πe
ρ

Tl
2 (Kl−r)+ǫ, we get for η ∈ A that ‖x1 − x2‖ ≥

2
√

KlTl

πe
ρǫ. Hence we get

Pe
(
H

(l)
eff · (IC \ C0)

)
≤ Pr(‖ñex‖ ≥

√
KlTl

πe
ρǫ).

For ρ ≥ 1 we get according to the bounds in [9] that

Pr(‖ñex‖ ≥
√

KlTl

πe
ρǫ)) ≤ e−KlTlρ

1+ǫ

ρKlTl(1+ǫ)eKlTl .

As a result, there exists a coefficientD
′′

(KlTl) such that

Pe
(
H

(l)
eff · (IC \ C0)

)
≤ D

′′

(KlTl)ρ
−Tl(Kl−r)+

∑KlTl
i=1 ηi

for η ∈ A and ρ ≥ 1. This bound applies for any IC in
the ensemble. From (31) we can state thatPFC

e (ρ, η) =

EC0

(
PFC
e (H

(l)
eff · C0)

)
≤ D

′

(KlTl)ρ
−Tl(Kl−r)+

∑KlTl
i=1 ηi .

Hence, we get that

Pe(ρ, η) ≤ D(KlTl)ρ
−Tl(Kl−r)+

∑KlTl
i=1 ηi (34)

where Pe(ρ, η) = EC0

(
P IC
e (H

(l)
eff · C0)

)
is the average

decoding error probability of the ensemble of IC’s defined
in (33), andD = 2max(D

′

, D
′′

) > 1.

Next, we set the value ofb to be large enough such that
each IC density from the ensemble in (33),γ

′

rc, equalsγrc up
to a factor of 2. By choosingb = b

′ · ρǫ we get

γ
′

rc = γrc(
b

b+ b
′ )

2KlT = γrc
1

1 + ρ−ǫ
.

For each valueρ ≥ 1, we get 12γrc ≤ γ
′

rc ≤ γrc. As a result
we have

µrc ≤ µ
′

rc =
(γ

′

rc)
− 1

KlT

2πeσ2
≤ 2µrc.

Note that in our proof we referred to matrix of dimension
NTlxKlTl. However these results apply for any full rank
matrix with number of rows which is greater or equal to the
number of columns.

By averaging arguments we know that there exists a se-
quence of IC’s that satisfies these requirements.

D. Achieving the Optimal DMT

In this subsection we calculate the DMT of the proposed
transmission scheme. We upper bound the determinant of the
effective channel inverse,|H(l)†

eff H
(l)
eff |−1, based on the effective

channel properties presented in subsection IV-B. In Theorem
3 we showed that the upper bound on the error probability
depends on this determinant. Hence, the upper bound on
the determinant gives us a new upper bound on the average
decoding error probability. We average the new upper bound
over all channel realizations and get the transmission scheme
DMT.

The channel matrixH consists ofN ·M i.i.d entries, where
each entry has distributionhi,j ∼ CN(0, 1). Without loss of
generality we consider the case where the columns ofH are
drawn sequentially from left to right, i.e.h1 is drawn first,
thenh2 is drawn et cetera. Columnhj is anN -dimensional
vector. Givenhmin(1,j−N+1), . . . , hj−1, we can write

hj = Θ(hmin(1,j−N+1), . . . , hj−1) · h̃j

whereΘ(·) is anNxN unitary matrix.Θ(·) is chosen such
that:

1) The first entry of̃hj , h̃1,j, is in the direction ofhj−1.
2) The second entry,̃h2,j, is in the direction orthogonal to

hj−1, in the hyperplane spanned by{hj−1, hj−2}.
3) The min(j,N) − 1 entry, h̃min(j,N)−1,j, is in

the direction orthogonal to the hyperplane spanned
by {hmax(2,j−N+2), . . . , hj−1} inside the hyperplane
spanned by{hmax(1,j−N+1), . . . , hj−1}.

4) The rest of the N − min(j,N) + 1 entries
are in directions orthogonal to the hyperplane
{hmax(1,j−N+1), . . . , hj−1}.

Note that h̃i,j , 1 ≤ i ≤ N , 1 ≤ j ≤ M are i.i.d
random variables with distributionCN(0, 1). Let us denote
by hj⊥j−1,...,j−k the component ofhj which resides in the
N − k subspace which is perpendicular to the space spanned
by {hj−1, . . . , hj−k}. In this case we get

‖hj⊥j−1,...,j−k‖2 =

N∑

i=k+1

|h̃i,j |2 1 ≤ k ≤ min(j,N)− 1.

(35)
If we assign|h̃i,j |2 = ρ−ξi,j , we get that the probability

density function (PDF) ofξi,f is

f(ξi,j) = C · log ρ · ρ−ξi,j · e−ρ
−ξi,j

(36)

whereC is a normalization factor. In our analysis we assume
very large values forρ. Hence we can neglect events where
ξi,j < 0 since in this case the PDF (36) decreases exponen-
tially as a function ofρ. For very largeρ, ξi,j ≥ 0, 1 ≤ i ≤ N

and1 ≤ j ≤ M the PDF takes the following form

f(ξi,j) ∝ ρ−ξi,j ξi,j ≥ 0. (37)

In this case by assigning in (35) the vectorξ
j

=

(ξ1,j , . . . , ξN,j)
T , that has PDF which is proportional to



ρ−
∑N

i=1 ξi,j , we get that

‖hj⊥j−1,...,j−k‖2=̇ρ−mins∈{k+1,...,N} ξs,j = ρ
−a(k,ξ

j
)

(38)

where 1 ≤ k ≤ min(j, L) − 1 and a(k, ξ
j
) =

mins∈{k+1,...,N} ξs,j . In addition

‖hj‖2=̇ρ−mins∈{1,...,N} ξs,j = ρ
−a(0,ξ

j
)
. (39)

Note that

a(min(j, L)− 1, ξ
j
) ≥ · · · ≥ a(0, ξ

j
) ≥ 0. (40)

Next we wish to quantify the contribution of a certain col-
umn in the channel matrix,hj , to the determinant|H(l)†

eff H
(l)
eff |.

H
(l)
eff is a block diagonal matrix. Hence the determinant of

|H(l)†
eff H

(l)
eff | can be expressed as

|H(l)†
eff H

(l)
eff | =

Tl∏

i=1

|Ĥ†
i Ĥi|. (41)

AssumeĤi = (ĥ1, . . . , ĥm), i.e. Ĥi hasm columns. In this
case we can state that the determinant

|Ĥ†
i Ĥi| = ‖ĥ1‖2‖ĥ2⊥1‖2 . . . ‖ĥm⊥m−1,...,1‖2.

Note thatĤi also has more rows than columns. The columns
of Ĥi are subset of the columns of the channel matrixH .
Hence we are interested in the blocks wherehj occurs. We
know that the contribution ofhj to those determinants can be
quantified by taking into account the columns to its left in
each block. We consider two cases:

• The caseN ≥ M . In this case we can see from (17)-
(19) thathj may occur with{h1, . . . , hj−1} to its left in
different blocks.

• The caseM > N . In this case we can see from (20)-(22)
thathj may occur only with{hmax(1,j−N+1), . . . , hj−1}
to its left in different blocks.

Based on (38) and (39) we can quantify the contribution of
hj to |H(l)†

eff H
(l)
eff | by

‖hj‖2bj(0)
min(j,L)−1∏

k=1

‖hj⊥j−1,...,j−k‖2bj(k)=̇

ρ
−

∑min(j,L)−1
k=0 bj(k)a(k,ξ

j
)

(42)

wherebj(k) is the number of occurrences ofhj in H
(l)
eff blocks,

with only {hj−1, . . . , hj−k} to its left. bj(0) is the number of
occurrences ofhj with no columns to its left. Note that from
the definition of the transmission scheme we get that forl = 0,
bj(k) > 0 for 1 ≤ k ≤ min(j, L)− 1.

In the following theorem we calculate the DMT of the
proposed transmission scheme.

Theorem 4. There exists a sequence of KlTl-complex dimen-
sional IC’s with transmitter density γtr = ρrTl and Tl channel
uses that has diversity order

dKlTl
(r) ≥ (M − l)(N − l)− (r − l)(N +M − 2 · l − 1)

where 0 ≤ r ≤ Kl and l = 0, . . . , L− 1.

Proof: The proof outline is as follows. The upper
bound on the error probability from Theorem 3 depends on
|H(l)†

eff H
(l)
eff |−1. We upper bound this determinant value and

average over different realizations ofH(l)
eff in order to find

Gl diversity order. We begin by lower bounding|H(l)†
eff H

(l)
eff |.

Based on the sequential structure ofGl, we lower bound the
contribution of a certain column ofH , hj , 1 ≤ j ≤ M to
the determinant. This gives us a new upper bound on the
error probability for each channel realization. We averagethe
new upper bound on the error probability, by averaging over
h̃1, . . . , h̃M . From this averaging we get the required diversity
order.

Specifically, we first lower bound the contribution
of hj to the determinant (42), by upper bounding∑min(j,L)−1

k=0 bj(k)a(k, ξj). Based on Lemma 1, and the fact
that when two columns ofH occur together in a block of
H

(l)
eff , all the columns ofH between them must also occur in

the same block, we get

min(j,L)−1∑

s=k

bj(s) ≤ N − k 0 ≤ k ≤ min(j, L)− 1. (43)

where
∑min(j,L)−1

s=k bj(s) is the number of occurrences of
{hj , . . . , hj−k} in H

(l)
eff blocks. Hence, we can state that∑min(j,L)−1

s=0 bj(s) ≤ N, by assigningk = 0 in (43). Also
note that forl = 0, the sum

∑min(j,L)−1
s=0 bj(s)a(s, ξj) is larger

than for any other1 ≤ l ≤ L − 1. From the inequalities in
(40), and the fact that forl = 0 we get bj(k) > 0 for any
1 ≤ k ≤ min(j, L)− 1, we can state that

min(j,L)−1∑

s=0

bj(s)a(s, ξj) ≤
min(j,L)−2∑

s=0

a(s, ξ
j
)

+(N −min(j, L) + 1)a(min(j, L)− 1, ξ
j
) = c(j). (44)

Using (42) and (44) we can state that for a vectorξ
j
, that has

PDF ρ−
∑N

i=1 ξi,j , we can lower bound the contribution ofhj

to |H(l)†
eff H

(l)
eff | by

‖hj‖2bj(0)
min(j,L)−1∏

k=1

‖hj⊥j−1,...,j−k‖2bj(k) ≥ ρ−c(j). (45)

By taking into account the contribution of each columnhj to
the determinant we get that

|H(l)†
eff H

(l)
eff | =

M∏

j=1

‖hj‖2bj(0)
min(j,L)−1∏

k=1

‖hj⊥j−1,...,j−k‖2bj(k). (46)

By considering the set of vectorsξ
1
, . . . , ξ

M
, that have PDF

ρ−
∑M

j=1

∑N
i=1 ξi,j , and by using the lower bound from (45) we

get
|H(l)†

eff H
(l)
eff | ≥ ρ−

∑M
j=1 c(j) (47)



The upper bound on the error probability presented in
Theorem 3 is proportional to

ρ−Tl(Kl−r) · |H(l)†
eff H

(l)
eff |−1 = ρ−Tl(Kl−r)+

∑KlT

i=1 ηi (48)

for ηi ≥ 0 and 1 ≤ i ≤ KlTl, whereρ−
ηi
2 are the singular

values ofH(l)
eff . Hence, in order to use the upper bound from

Theorem 3 in our analysis, we need to show that by taking
ξi,j ≥ 0, 1 ≤ i ≤ N , 1 ≤ j ≤ M we also get thatηi ≥ 0,
1 ≤ i ≤ KlTl. Note that the entries ofH(l)

eff are elements of
the channel matrixH . Also, all H ′s columns must appear in
H

(l)
eff . Hence, from trace considerations we get

ρ−mini,j(ξi,j)

KlTl

≤ ρ−mins(ηs) ≤ N ·KlT
2
l ρ

−mini,j(ξi,j).

As a result we get thatmini,j(ξi,j) ≥ 0 if and only if
mins(ηs) ≥ 0, and soηs ≥ 0 for every 1 ≤ s ≤ KlTl. As
the upper bound on the error probability in (48) applies for
ηi ≥ 0, 1 ≤ i ≤ KlTl, this upper bound also applies whenever
ξi,j ≥ 0, 1 ≤ i ≤ N and 1 ≤ j ≤ M . In equation (47) we
found a lower bound on the determinant. We use this lower
bound to upper bound the determinant of the matrix inverse
|H(l)†

eff H
(l)
eff |−1

|H(l)†
eff H

(l)
eff |−1 ≤ ρ

∑M
j=1 c(j). (49)

and as a consequence we can upper bound the error probability.

We can express the average decoding error probability over
the ensemble of IC’s for largeρ as follows

Pe(ρ) =

∫

H

Pe(ρ,H)f(H)dH=̇
∫

ξi,j≥0

Pe(ρ, ξi,j)f(ξi,j)dξi,j (50)

wherePe(ρ,H) = Pe(ρ, ξi,j) is the ensemble average de-
coding error probability per channel realization, andξi,j ≥ 0
meansξi,j ≥ 0 for 1 ≤ i ≤ N and1 ≤ j ≤ M . We divide the
integration range into 2 sets:A = {ξi,j | ∑N

i=1

∑M
j=1 ξi,j ≤

Tl(Kl − r); ξi,j ≥ 0} and A = {ξi,j | ∑N
i=1

∑M
j=1 ξi,j >

Tl(Kl − r); ξi,j ≥ 0}. Hence, we can write the average
decoding error probability as follows

Pe(ρ)=̇

∫

ξi,j∈A

Pe(ρ, ξi,j)f(ξi,j)dξi,j+

∫

ξi,j∈A

Pe(ρ, ξi,j)f(ξi,j)dξi,j . (51)

We begin by upper bounding the first term of the error
probability in (51). Based on Theorem 3, the average decoding
error probability per channel realization is upper boundedby
Pe(ρ,H) ≤ ρ−Tl(Kl−r)+

∑KlTl
i=1 ηi . Using the upper bound

on the determinant (49) and the fact that|H(l)†
eff H

(l)
eff |−1 =

ρ
∑KlTl

i=1 ηi , we get that the first term of the error probability
(51) is upper bounded by

∫

ξi,j∈A

ρ−Tl(Kl−r)+
∑M

j=1(c(j)−
∑N

i=1 ξi,j)dξi,j. (52)

Now we prove a Lemma that shows that the exponent of the
integrand in the upper bound from (52) is negative forξi,j ≥ 0.

Lemma 2. consider ξi,j ≥ 0 for 1 ≤ i ≤ N and 1 ≤ j ≤ M .
The sum

c(j)−
N∑

i=1

ξi,j ≤ 0

for every 1 ≤ j ≤ M .

Proof: See appendix D.
In a similar manner to [3], [7], for very largeρ and finite

integration range, we can approximate the integral by finding
the most dominant exponential term in (52). Based on Lemma
2 we know that the exponent of the integrand is always
negative. Hence, we can approximate the upper bound by
finding

min
ξi,j∈A

Tl(Kl − r) +
M∑

j=1

(
N∑

i=1

ξi,j − c(j)).

As
∑N

i=1 ξi,j − c(j) ≥ 0 the minimum is achieved when∑N
i=1 ξi,j − c(j) = 0 for 1 ≤ j ≤ M . This can be achieved

for instance by takingξi,j = 0 for 1 ≤ i ≤ N , 1 ≤ j ≤ M .
In this case we get that the diversity order equalsTl(Kl − r)
which is the best diversity order possible for IC’s of complex
dimensionKlTl.

Next we upper bound the second term of the error prob-
ability from (51). Forξi,j ∈ A we upper bound the average
decoding error probability per channel realization by 1. Inthis
case we get

∫

ξi,j∈A

ρ−
∑M

j=1

∑N
i=1 ξi,jdξi,j .

Again we approximate this integral by calculating the most
dominant exponential term, i.e.minξi,j∈A

∑N
i=1

∑M
j=1 ξi,j .

The minimal value for this case is alsoTl(Kl − r). Hence,
we get diversity orderTl(Kl − r) also for the second term
in (51). As a result we can state that for both terms in (51)
we get the same diversity order, and the transmission scheme
diversity order is upper bounded byTl(Kl − r). By assigning
the values ofTl andKl we get the theorem upper bound. This
concludes the proof.

The diversity order attained on Theorem 4 forKl, Tl

coincides with the optimal DMT of finite constellations in the
rangel ≤ r ≤ l + 1. Hence, by considering0 ≤ l ≤ L − 1,
we can attain the optimal DMT withL sequences of IC’s.

We present as an illustrative example the case ofM = N =
2. Let us consider the case wherel = 0. In this caseK0 = 4

3 ,
andT0 = 3, i.e. we transmit4-complex dimensional IC. The
transmission scheme diversity order in this case is4 − 3r,
0 ≤ r ≤ 4

3 . In this case the effective channel matrix,H
(0)
eff ,

consists of 3 blocks:̂H1 = (h1, h2), Ĥ2 = h1 and Ĥ3 = h2.
According to our definitions we get that

|Ĥ†
1Ĥ1| = ‖h1‖2 · ‖h2⊥1‖2 = ρ−min(ξ1,1,ξ2,1) · ρ−ξ2,2

and also‖h1‖2 = ρ−min(ξ1,1,ξ2,1), ‖h2‖2 = ρ−min(ξ1,2,ξ2,2).



In accordance with (51) we divide the integral into2 terms.
In the first term we solve the optimization problem

min
ξi,j∈A

(4 − 3r)− (ξ2,2 + 2 ·min
(
ξ1,1, ξ2,1)

+min (ξ1,2, ξ2,2)
)
+

2∑

i=1

2∑

j=1

ξi,j .

One solution to this problem isξi,j = 0 for 1 ≤ i ≤ 2,
1 ≤ j ≤ 2. In this case we get an exponential term that
equals4−3r. For the second integral we solve the optimization
problem

min
ξi,j∈A

2∑

i=1

2∑

j=1

ξi,j .

In this case the optimization problem solution is∑2
i=1

∑2
j=1 ξi,j = 4 − 3r. Hence, all together we get

diversity order that equals4 − 3r, that coincides with the
optimal DMT of finite constellations in the range0 ≤ r ≤ 1.

In the next theorem we prove the existence of a sequence
of lattices that has the same lower bound as in Theorem 4.

Theorem 5. There exists a sequence of 2KlTl-real dimen-
sional lattices with transmitter density γtr = ρrTl and Tl

channel uses that has diversity order

dKlTl
(r) ≥ (M − l)(N − l)− (r − l)(N +M − 2 · l − 1)

where 0 ≤ r ≤ Kl and l = 0, . . . , L− 1.

Proof: See appendix E
Note that we consider a2KlTl-real dimensional lattice,

as in the transmission schemeGl we spread the firstKlTl

dimensions of the lattice on the real part ofGl’s non-zero
entries, and the otherKlTl dimensions of the lattice on the
imaginary part ofGl’s non-zero entries. By doing that we
don’t necessarily transmit aKlTl-complex dimensional lattice.
Considering the2KlTl-real dimensional lattice enables us
to use theMinkowski-Hlawaka-Siegel Theorem [9],[12], and
prove Theorem 5.

E. Power Peak to Average Ratio

For practical reasons, such as power peak to average ratio,
one may prefer to have a transmission scheme that spreads
the transmitted power equally over time and space. The
transmitting matrixGl contains exactlyKlTl non-zero entries,
where the rest of the entries are zero. In order to spread the
power more equally over time and space we use the following
unitary operations

ULGlUR.

UL is anMxM unitary matrix that spreads each column of
Gl, i.e. spreads over space.UR is a TlxTl unitary matrix
that spreads each raw ofGl, i.e. spreads over time. As the
distribution of H and H · UL are identical, multiplyingUL

with Gl gives exactly the same performance. Based on the
notations from (2) we can state that

Gl · UR =
(
x1, . . . , xTl

)

where
(
x1, . . . , xTl

)
are the channel inputs. In the receiver

we can state that the received signals are
(
y
1
, . . . , y

Tl

)
. By

multiplying with U
†
R we get

(
y
1
, . . . , y

Tl

)
· U †

R = Gl +
(
n1, . . . , nTl

)
U

†
R.

The distribution of
(
n1, . . . , nTl

)
is identical to the distribution

of
(
n1, . . . , nTl

)
U

†
R. Hence, multiplyingGl with UR gives

also exactly the same performance. For instance, in order to
achieve full diversity and spread the power more uniformly,
we takeG0 and duplicate its structures times to create the
transmission schemeG(s)

0 . In this case the transmission matrix
G

(s)
0 consists ofsK0T0 complex non-zero entries, i.e we

transmit ansK0T0 complex dimensional IC within thesMT0

complex space.G(s)
0 is an MxsT0 dimensional matrix, that

has exactly the same diversity order asG0 (it duplicates the
structure ofG0 s times). Each row ofG(s)

0 has exactlysN
non-zero entries. We defineU (s)

R as sT0xsT0 unitary matrix.
For large enoughs, the multiplicationG(s)

0 · U (s)
R spreads the

power more uniformly over space and time, and still achieves
full diversity.

F. Averaging Arguments

In this subsection we show that there existL sequences of
lattices that attain the optimal DMT, where each sequence out
of the L sequences attains different segment on the optimal
DMT curve. In addition we show that there exists a single
IC that attains the optimal DMT by diluting its points and
adapting its dimensionality.

As a consequence of Theorem 3 and Theorem 4 we can
state the following

Corollary 3. Consider a sequence of KT -complex dimen-
sional IC’s SKT (ρ) with density γtr = 1, that attains diversity
order d. This sequence of IC’s also attains diversity order
d(1− r

K
) when the sequence density is scaled to γtr = ρrT .

Proof: As γtr = 1 for everyρ, SKT (ρ) has multiplexing
gain r = 0. We denote the error probability ofSKT (ρ) by
PeS(ρ, 0), where0 represents the multiplexing gain. Assume
that the error probability ofSKT (ρ) equals

PeS(ρ, 0) = A
′

(ρ)ρ−d

where− limρ→∞ logρ PeS(ρ, 0) = d, i.e. SKT (ρ) has diver-
sity orderd. By scaling the sequence of IC’s such that

SKT (ρ) = SKT (ρ) · ρ−
r

2K 0 ≤ r ≤ K,

i.e., scalingSKT (ρ) by a factor ofρ−
r

2K , we get thatSKT (ρ)
has densityγtr = ρrT , multiplexing gainr and error proba-
bility

PeS(ρ, r) = PeS(ρ
1− r

K , 0) = A
′

(ρ1−
r
K )ρ−d(1− r

K
).

As a result we get− limρ→∞ logρ PeS(ρ, r) = d(1− r
K
), i.e.

SKT (ρ) has diversity orderd(1 − r
K
).

Corollary 4. The optimal DMT is attained by exactly L

sequences of 2KlTl-real dimensional lattices, l = 0, . . . , L−1,



where each sequence attains different segment of the optimal
DMT.

Proof: From Theorem 5 we know that there exists a
2KlTl-real dimensional sequence of lattices with densityγtr =
1 that attains diversity(M − l)(N − l)+ l(N +M − 2 · l− 1).
Hence, based on Corollary 3 we can state that by scaling this
2KlTl-real dimensional sequence of lattices into a sequence
of lattices with densityγtr = ρrTl we get diversity order
(M− l)(N− l)−(r− l)(N+M−2 ·l−1), i.e. the sequence of
lattices attains the optimal DMT line in the rangel ≤ r ≤ l+1.
The optimal DMT is the maximal value betweenL lines, for
each0 ≤ r ≤ L. Hence, there existL sequences of lattices
that attain the optimal DMT.

Next, we show that there exists a single sequence of IC’s
that attains the optimal DMT. The optimal DMT consists of
L segments of straight lines. Each segment is attained by
reducing the IC’s dimensionality to the correct dimension,
and diluting their points to get the desired density. Note that
in Theorem 4 we showed that for each multiplexing gain,
r, there exists a sequence of IC’s that attains the optimal
DMT. On the other hand, on Corollary 5 we show that a
single sequence of IC’s attains the optimal DMT for anyr, by
adapting its dimensionality and diluting its points. Also note
thatK0T0 > K1T1 > · · · > KL−1TL−1.

Corollary 5. There exists a single sequence of K0T0-complex
dimensional IC’s, that attains the L segments of the optimal
DMT:

(M − l)(N − l)− (r − l)(N +M − 2 · l − 1) 0 ≤ r ≤ Kl

where l = 0, · · · , L − 1. The l′th segment is attained by
reducing the IC’s complex dimensionality to KlTl, and by
diluting their points to get density γtr = ρTlr.

Proof: See Appendix F.

V. CONCLUSION

In this work we introduced the fundamental limits of
IC’s/lattices in MIMO fading channels. We believe that this
work can set a framework for designing lattices for MIMO
channels using lattice decoding.
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APPENDIX A
PROOF OFTHEOREM 1

We prove the result for any IC with densityγrc. The proof
outline is as follows. We prove the theorem by contradiction.
First, for a given IC with receiver densityγrc, we assume
average decoding error probability that equals to the lower
bound we wish to prove. Then, we derive a “regular” IC from
the given IC with the same densityγrc and the same average
decoding error probability. Regularizing the IC allows us to
find a lower bound on the IC maximal error probability that
depends on its density. We expurgate half of the codewords
with largest error probability and get another regular IC with
density γrc

2 . Based on the average decoding error probability,
we upper bound the expurgated IC maximal error probability,
and based on its density we lower bound the same maximal
error probability, and get contradiction.

Let us consider aKT -complex dimensional IC in the
receiver,S

′

KT (ρ), with receiver densityγrc and average de-
coding error probability

Pe(H, ρ) = (1− ǫ∗)
C(KT )

4
e−µrc·A(KT )+(KT−1) ln(µrc)

(53)
where A(KT ) = ( 1

(1−ǫ1)(1−ǫ2)
)

1
KT e · Γ(KT + 1)

1
KT ,

C(KT ) = ( 1
(1−ǫ1)(1−ǫ2)

)
KT−1
KT

e
KT− 3

2 Γ(KT+1)
KT−1
KT

2·Γ(KT ) and 0 <

ǫ1, ǫ2 < 1.
Next we construct a regularized IC,S

′′

KT (ρ), from S
′

KT (ρ),
that has bounded and finite volume Voronoi regions, i.e.
there exists a finite radiusr such thatV (x) ⊂ Ball(x, r),
∀x ∈ S

′′

KT (ρ), whereBall(x, r) is a KT -complex dimen-
sional ball centered aroundx. We constructS

′′

KT (ρ) in the
following manner. Let us defineC0(ρ,H) = {S′

KT (ρ)
⋂
(Hex·

cubeKT (b))}, i.e. a finite constellation derived fromS
′

KT (ρ).
We turn this finite constellation into an IC by tilingC0(ρ,H)
in the following manner

S
′′

KT (ρ) = C0(ρ,H) + (b + b
′

)H̃exZ
2KT (54)

where for simplicity we assumed thatcubeKT (b) ⊂ CKT ,



i.e. contained within the firstKT complex dimensions. Cor-
respondingly, under this assumption,H̃ex equals the firstKT

complex columns ofHex. In this case, the tiling ofC0(ρ,H)
is done according to the complex integer combinations of
H̃ex columns. In general,cubeKT (b) may be a rotated cube
within CMT . In this case the tiling is done according to some
KT complex linearly independent vectors, consisting of linear
combinations ofHex columns. An alternative way to construct
S

′′

KT (ρ) is by considering the transmitter ICSKT (ρ). In this
case we can construct another IC in the transmitter

SKT (ρ) = {SKT (ρ)
⋂

cubeKT (b)}+ (b + b
′

)Z2KT (55)

where without loss of generality we assumed again that
cubeKT (b) ∈ CKT . In this caseS

′′

KT (ρ) = {Hex · SKT (ρ)}.

Next we would like to setb andb
′

to be large enough such
thatS

′′

KT (ρ) has average decoding error probability smaller or

equal toC(KT )
2 e−µrc·A(KT )+(KT−1) ln(µrc) and density larger

or equal toγrc. Due to the symmetry that results from the tiling
(54), it is sufficient to upper bound the average decoding error
probability of the wordsx ∈ C0(ρ,H) ⊂ S

′′

KT (ρ) denoted
by Pe

S
′′
KT

(C0) in order to upper bound the entire ICS
′′

KT (ρ)

average decoding error probability. HencePeS′′

KT
(C0) is also

the average decoding error probability for the ICS
′′

KT (ρ). We
can upper bound the error probability in the following manner

Pe
S

′′
KT

(C0) ≤ Pe(C0) + Pe(S
′′

KT \ C0) (56)

wherePe(C0) is the average decoding error probability of
the finite constellationC0(ρ,H) and Pe(S

′′

KT \ C0) is the
average decoding error probability to points in the set{S′′

KT \
C0(ρ, h)}, i.e. the error probability inflicted by the replicated
codewords outside the setC0(ρ,H).

We begin by upper boundingPe(S
′′

KT \C0) by choosingb
′

to be large enough. By the tiling at the transmitter (55) and the
fact that we have finite complex dimensionKT , for a certain
channel realizationHex we get that there existsδ(Hex) such
that any pair of pointsx1 ∈ C0(ρ,H), x2 ∈ {S′′

KT \C0(ρ, h)}
fulfils ‖x1 − x2‖ ≥ 2b

′ · δ(Hex). The termδ(Hex) is a factor
that defines the minimal distance between these 2 sets for a
given channel realization. Note that also for the caseM > N ,
there must exist suchδ(Hex), as we assumed thatS

′′

KT (ρ) is
KT -complex dimensional IC, i.e. the projected ICS

′′

KT (ρ) =
HexSKT (ρ) is alsoKT -complex dimensional. Hence, we get
that

Pe(S
′′

KT \ C0) ≤ Pr(‖ñex‖ ≥ b
′

δ(Hex))

where ñex is the effective noise in theKT -complex dimen-
sional hyperplane whereS

′′

KT (ρ) resides. By using the upper

bounds from [9], we get that for(b
′
δ(Hex))

2

2KT
> σ2

Pr(‖ñex‖ ≥ b
′

δ(Hex)) ≤ e−
(b

′
δ(Hex))2

2σ2 (
(b

′

δ(Hex))
2e

2KTσ2
)KT .

Hence, forb
′

large enough we get that

Pe(S
′′

KT \C0) ≤ (1−ǫ∗)
C(KT )

4
e−µrc·A(KT )+(KT−1) ln(µrc).

Now we would like to upper bound the error probability,
Pe(C0), of the finite constellationC0(ρ,H). According to
the definition of the average decoding error probability in (8),
the definition ofC0(ρ,H) and the assumption in (53), we get
that

Pe(C0) ≤
(1− ǫ∗)(1 + ǫ(b))

4
C(KT )e−µrc·A(KT ) · µ(KT−1)

rc

wherelimb→∞ǫ(b) = 0. It results from the fact that in (8) we
take the limit supremum, and so forb large enough the average
decoding error probability of the IC must be upper bounded by
the aforementioned term. Also, for anyb the average decoding
error probability of the finite constellationC0(ρ,H) is smaller
or equal to the error probability, defined in (8), of decoding
over the entire IC. Based on the upper bound from (56) we get
the following upper bound on the error probability ofS

′′

KT (ρ)

Pe
S

′′

KT
(C0) ≤ (1−ǫ∗)(1+ǫ(b))

2 C(KT )e−µrc·A(KT ) · µ(KT−1)
rc .

(57)

According to the definition ofγrc and due to the fact that
we are taking limit supremum: for any0 < ǫ1 < 1 there exists
b large enough such that

|C0(ρ,H)|
vol

(
Hex · cubeKT (b)

) ≥ (1− ǫ1)γrc. (58)

where|C0(ρ,H)| is the number of words inC0(ρ,H). In fact
there exists large enoughb that fulfils both (57) and (58).

In (54) we tiled byb+ b
′

. If we had tiledC0(ρ,H) only by
b, then for large enoughb we would have got IC with density
larger or equal to(1− ǫ1)γrc. However , as we tile byb+ b

′

,
we get forb large enough thatS

′′

KT (ρ) has density greater or
equal to 1−ǫ1

1+ b
′

b

γrc. Hence, for any0 < ǫ2 < 1 there existsb

large enough such that

γ
′′

rc ≥ (1− ǫ1)(1 − ǫ2)γrc. (59)

whereγ
′′

rc is the density ofS
′′

KT (ρ). Again, there also must
exist large enoughb that fulfils (57) and (59) simultaneously.
Hence, for large enoughb we can derive fromS

′

KT (ρ)
an IC S

′′

KT (ρ) with density γ
′′

rc ≥ (1 − ǫ1)(1 − ǫ2)γrc
and average decoding error probability smaller or equal to
(1−ǫ∗)(1+ǫ(b))

2 C(KT )e−µrc·A(KT )+(KT−1) ln(µrc).

By averaging arguments we know that expurgating the worst
half of the codewords inS

′′

KT (ρ), yields an ICS
′′′

KT (ρ) with
density

γ
′′′

rc ≥ (1 − ǫ1)(1− ǫ2)
γrc

2
= γrc (60)

and maximal decoding error probability

sup
x∈S

′′′
KT

Pe
S
′′′
KT

(x) ≤ (1− ǫ∗)(1 + ǫ(b))C(KT )e−µrc·A(KT )µKT−1
rc

(61)

wherePe
S

′′′
KT

(x) is the error probability ofx ∈ S
′′′

KT (ρ).

From the construction method ofS
′′

KT (ρ), defined in (54),
it can be easily shown that tilingC0(ρ,H) yields bounded
and finite volume Voronoi regions, i.e. there exists a finite
radius r such thatV (x) ⊂ Ball(x, r), ∀x ∈ S

′′

KT (ρ). Due
to the symmetry that results fromS

′′

KT (ρ) construction (54),



it also applies forS
′′′

KT (ρ). Hence, there must exist a point
x0 ∈ S

′′′

KT (ρ) that satisfies|V (x0)| ≤ 1
γ
′′′
rc

≤ 1
γrc

. According
to the definition of the effective radius in (1), we get that
reff(x0) ≤ reff(γrc). Hence, we get

sup
x∈S

′′′

KT
Pe

S
′′′

KT
(x) ≥ Pe

S
′′′

KT
(x0) >

Pr
(
‖ñex‖ ≥ reff(x0)

)
≥ Pr

(
‖ñex‖ ≥ reff(γrc)

)

(62)

where the lower boundPe
S

′′′
KT

(x0) > Pr(‖ñex‖ ≥ reff(x0))
was proven in [9]. We calculate the following lower bound

Pr
(
‖ñex‖ ≥ reff(γrc)

)
>

∫ r2eff+σ2

r2eff

rKT−1e−
r

2σ2

σ2KT 2KTΓ(KT )
dr ≥ r2KT−2

eff e−
r2eff
2σ2

σ2KT−22KTΓ(KT )
√
e

(63)

By assigningr2eff = (Γ(KT+1)
γrcπKT )

1
KT we get

sup
x∈S

′′′

KT
Pe

S
′′′

KT
(x) >

C(KT ) · e−
γ
− 1

KT
rc
2πeσ2 A(KT )+(KT−1) ln(

γ
− 1

KT
rc
2πeσ2 ).

(64)

Hence, for certainǫ1 andǫ2 we get

supx∈S
′′′

KT
PeS′′′

KT
(x) >

C(KT ) · e−µrcA(KT )+(KT−1) ln(µrc) (65)

where µrc = γ
− 1

KT
rc

2πeσ2 . For b large enough we get(1 −
ǫ∗)(1 + ǫ(b)) < 1, and so (65) contradicts (61). As a
result we get contradiction of the initial assumption in
(53). This contradiction also holds for anyPe(H, ρ) <
(1−ǫ∗)C(KT )

4 e−µrc·A(KT )+(KT−1) ln(µrc). Hence, we get that

Pe(H, ρ) >
C(KT )

4
e−µrc·A(KT )+(KT−1) ln(µrc). (66)

Note that the lower bound holds for any0 < ǫ1, ǫ2, ǫ
∗ < 1

and also that the expressions in (53), (66) are continuous. As
a result we can also setǫ1 = ǫ2 = ǫ∗ = 0 and get the desired
lower bound. Finally, note that we are interested in a lower
bound on the error probability of any IC for a given channel
realization. Hence, we are free to choose different values for
b andb

′

for each channel realization. andb
′

.

APPENDIX B
PROOF OF THE OPTIMIZATION PROBLEM INTHEOREM 2

We would like to solve the optimization problem in (15)
for any value ofK = B + β ≤ L, whereB ∈ N and 0 <

β ≤ 1. First we consider the case of0 < K ≤ 1, i.e. the
case whereB = 0. In this case the constraint boils down to
αL = 1 − r

K
. By assigningα1 = · · · = αL = 1 − r

K
we get

thatdKT (r) ≤ MN(1− r
K
). Next we analyze the case where

K > 1. Due to the constraint, the minimal value must satisfy
α1 = · · · = αL−B. From the constraint we also know that
αL = K − r −∑B−1

i=1 αL−i − βαL−B. By assigning in (15)

we get

min
α>0

(K − r)(N +M − 1) +
(
(M −B)(N −B)

− β(N +M − 1)
)
αL−B −

B−1∑

i=1

2i · αL−i (67)

whereα > 0 signifiesα1 ≥ · · · ≥ αL ≥ 0. We would like
to consider 2 cases. The case where

(
(M − B)(N − B) −

β(N + M − 1)
)
>

∑B−1
i=1 2i and the case where

(
(M −

B)(N − B) − β(N + M − 1)
)
≤ ∑B−1

i=1 2i. The first case,
where

(
(M −B)(N −B)− β(N +M − 1)

)
> B(B − 1), is

achieved forK < MN
N+M−1 . In this case we use the following

Lemma in order to find the optimal solution

Lemma 3. Consider the optimization problem

min
c

B1c1 −
D∑

i=2

Bici

where: (1). c1 ≥ · · · ≥ cD ≥ 0; (2). B1 >
∑D

i=2 Bi and
B2 > · · · > BD > 0; (3). βc1 +

∑D
i=2 ci = δ > 0, where

0 < β ≤ 1. The minimal value is achieved for c1 = · · · =
cD = δ

D−1+β
.

Proof: We prove by induction. First let us consider the
case whereD = 2. In this case we would like to find

min
c

B1c1 −B2c2. (68)

wherec1 ≥ c2 ≥ 0, βc1 + c2 = δ > 0, B1 > B2 > 0 and
0 < β ≤ 1. It is easy to see that for this case the minimum is
achieved forc1 = c2, as increasingc1 while decreasingc2 to
satisfyβc1 + c2 = δ will only increase (68).

Now let us assume that forD elements, the minimum is
achieved forc1 = · · · = cD = δ

D−1+β
. Let us considerD+1

elements with constraintβc1+
∑D+1

i=2 ci = δ. If we takec1 =
· · · = cD+1 = δ

D+β
we get

(B1 −
D+1∑

i=2

Bi)
δ

D + β
. (69)

We would like to show that it is the minimal possible value for
this problem. Let us takec

′

D+1 = δ
D+β

− ǫ ≥ 0. In this case

we getβc
′

1+
∑D

i=2 c
′

i =
(D−1+β)δ+(D+β)ǫ

D+β
in order to satisfy

βc
′

1 +
∑D+1

i=2 c
′

i = δ. According to our assumptionB1c
′

1 −∑D
i=2 Bic

′

i is minimal for c
′

1 = · · · = c
′

D = δ
D+β

+ ǫ
D−1+β

.
By assigning these values we get

(B1 −
D+1∑

i=2

Bi)
δ

D + β
+ (B1 −

D∑

i=2

Bi)
ǫ

D − 1 + β
+BD+1ǫ

which is greater than (69). This concludes the Lemma proof.

For the case
(
(M − B)(N − B) − β(N + M − 1)

)
>

B(B − 1), the optimization problem coincides with Lemma
3 as it fulfils the conditionB1 >

∑D
i=2 Bi in the lemma.

Hence, the optimization problem solution forK < MN
N+M−1 is



α1 = · · · = αL−1 =
K−r−αL

K−1 = α. The minimum is achieved
whenαL = α, i.e. the maximal valueαL can receive under
the constraintα1 ≥ · · · ≥ αL ≥ 0. We get thatα = 1 − r

K
,

and the optimization problem solution of (15) for the case
K < MN

M+N−1 is dKT (r) ≤ MN(1− r
K
), .

For the case
(
(M−B)(N−B)−β(N+M−1)

)
≤ B(B−1),

or equivalentlyK ≥ MN
N+M−1 , we would like to show that the

optimal solution must fulfilαL = 0. It result from the fact that
for the optimal solution, the term

(
(M−B)(N−B)−β(N+

M − 1)
)
αL−B − ∑B−1

i=1 2i · αL−i in (67) must be negative.
This is due to the fact that takingα1 = · · · = αL−1 gives
negative value. Hence, for the optimal solution we would like
to maximize

∑B−1
i=1 αL−i−βαL−B = K− r−αL. By taking

αL = 0 the sum is maximized. Hence, the optimal solution
for K ≥ MN

M+N−1 must haveαL = 0.
Now let us consider the general case. Assume that forK ≥

(M−l+1)(N−l+1)
N+M−1−2(l−1) + l− 1 the optimal solution must haveαL =
· · · = αL−l+1 = 0. First we consider the case where1 ≤ l ≤
B−1. For this case the constraint is

∑B−1
i=l αL−i+βαL−B =

K − r, i.e. the constraint contains at least 2 singular values.
We can rewrite (15) as follows

min
α>0

(K − r)(N +M − 1− 2 · l) +
(
(M − B)(N −B)

− β(N +M − 1− 2 · l)
)
αL−B −

B−1∑

i=l+1

2(i− l) · αL−i.

(70)

For the case
(
(M −B)(N −B)− β(N +M − 1− 2 · l)

)
>

(B − 1− l)(B − l) we get thatK <
(M−l)(N−l)
N+M−1−2·l + l and we

also assumed thatK ≥ (M−l+1)(N−l+1)
N+M−1−2(l−1) + l− 1. For this case

we can use Lemma 3 and get that the optimization problem
solution isαL−l−1 = · · · = αL−B =

K−r−αL−l

K−l−1 = α. The
minimum is achieved forαL−l = α. We get thatαL = · · · =
αL−l+1 = 0 andα1 = · · · = αL−l =

K−r
K−l

. Hence, for the

case (M−l+1)(N−l+1)
N+M−1−2(l−1) + l − 1 ≤ K <

(M−l)(N−l)
N+M−1−2·l + l the

optimization problem solution isdKT (r) ≤ (N − l)(M −
l)K−r

K−l
.

For the case
(
(M−B)(N−B)−β(N+M−1−2·l)

)
≤ (B−

1− l)(B − l), or equivalentlyK ≥ (M−l)(N−l)
N+M−1−2·l + l, the term(

(M−B)(N−B)−β(N+M−1−2·l)
)
αL−B−∑B−1

i=l+1 2(i−
l) · αL−i in (70) must be negative for the optimal solution.
This is due to the fact that by takingα1 = · · · = αL−l−1

we get negative value. Hence we would like to maximize the
sum

∑B−1
i=l+1 αL−i + βαL−B = K − r − αL−l. The sum is

maximized by takingαL−l = 0. Hence the optimal solution
for the caseK ≥ (M−l)(N−l)

N+M−1−2·l + l must haveαL−l = · · · =
αL = 0. Note that for the casel = B − 1 we have only 2
terms in the constraintαL−B+1+βαL−B = K− r. However,
the solution remains the same.

For the caseK ≥ (M−l+1)(N−l+1)
N+M−1−2(l−1) + l − 1 and l = B the

constraint is of the formαL−B = K−r
K−l

. Again we assume that
αL−B+1 = · · · = αL = 0. In this case the optimization prob-
lem solution isα1 = · · · = αL−l =

K−r
K−l

and the optimization
problem solution gives usdKT (r) ≤ (M−l)(N−l)K−r

K−l
. This

concludes the proof.

APPENDIX C
PROOF OFLEMMA 1

We begin by proving the caseN ≥ M . From the construc-
tion of Gl it can be seen that a set of columns{hj , . . . , hi}
may occur inN− i+ j blocks at most. It results from the fact
that we can only subtractM−i columns to the right ofhi (18),
andj − 1 columns to the left ofhj (19), and still get a block
that contains{hj , . . . , hi} (or even more specifically a block
that contains{hj , hi}). In addition, columns{hj , . . . , hi}
must occur in the firstN − M + 1 blocks, as these blocks
equal toH (17). Hence, we can upper bound the number of
occurrences byN −M + 1 + j − 1 +M − i = N − i+ j.

Next we prove for the caseM > N . In case0 ≤ i−j < N ,
the set of columns{hj , . . . , hi} may occur inN−i+j blocks
at most. We divide the proof into four cases.

1) First consider the case wherei ≤ N andj ≥ M−N+1.
In this case the set of columns{hj , . . . , hi} occurs in
all the firstM−N+1 blocks (20). As for the additional
N − 1− l pairs of columns, the set of columns belongs
both to the set{h1, . . . , hN} and{hM−N+1, . . . , hM}.
Hence, in the additional column pairs we can subtract
N−i columns to the right ofhi (21) andj−M+N−1
columns to the left ofhj (22). If we add it together
we get that the number of occurrences can not exceed
N − i+ j.

2) For the casei ≤ N and j < M − N + 1 the set
of columns can have onlyj occurrences in the first
M − N + 1 blocks. In this case the set{hj , . . . , hi}
occurs within{h1, . . . , hN} but does not occur within
{hM−N+1, . . . , hM}. Hence, the transmission scheme
only subtracts columns to the right ofhi (21). In this
case we can haveN − i subtractions and together we
getN − i+ j occurrences at most.

3) For the casei > N andj ≥ M−N+1 we haveM−i+1
occurrences in the firstM −N + 1 blocks. In this case
the set{hj , . . . , hi} occurs within{hM−N+1, . . . , hM}
but does not occur within{h1, . . . , hN}. Hence we can
subtract up toj −M +N − 1 columns to the left ofhj

(22). Together we getN − i+ j occurrences at most.
4) For the last case we havei > N and j < M −N + 1.

In this case the set of columns can only occur in the
first M − N + 1 blocks. In this case there are exactly
N − i+ j occurrences in the firstM −N + 1 blocks.

In casei − j ≥ N , the set of columns does’t occur in any
block as each column ofGl doesn’t have more thanN non-
zero entries.

APPENDIX D
PROOF OFLEMMA 2

We know that

c(j) =

min(j,L)−2∑

s=0

a(s, ξ
j
)

+(N −min(j, L) + 1)a(min(j, L)− 1, ξ
j
)



where

a(k, ξ
j
) = min

s∈{k+1,...,N}
ξs,j 0 ≤ k ≤ min(j, L)− 1

and by definition

a(min(j, L)− 1, ξ
j
) ≥ · · · ≥ a(0, ξ

j
) ≥ 0.

In order to prove the Lemma we begin witha(min(j, L) −
1, ξ

j
). We know that

N∑

s=min(j,L)

ξs,j ≥ (N −min(j, L) + 1) ·min
s

ξs,j (71)

wheres ∈ {min(j, L), . . . , N}. We can also see that

ξk+1,j ≥ min
s∈{k+1,...,N}

ξs,j (72)

for 0 ≤ k ≤ min(j, L)− 2. Hence we get

c(j)−
N∑

i=1

ξi,j ≤ 0.

This concludes the proof.

APPENDIX E
PROOF OFTHEOREM 5

We prove that there exists a sequence of2KlTl-real di-
mensional lattices (as a function ofρ) that attains the same
diversity order as in Theorem 4. By using theMinkowski-
Hlawaka-Siegel Theorem [9],[12], we upper bound the error
probability of the ensemble of lattices, for each channel real-
ization. This upper bound equals to the upper bound derived in
Theorem 3. Then we average the upper bound over all channel
realizations, and receive the desired diversity order.

We consider a2KlTl-real dimensional ensemble of lat-
tices, transmitted using the transmission scheme defined in
subsection IV-A. We spread the firstKlTl dimensions of the
lattice on the real part of the non-zero entries ofGl, and the
other KlTl dimensions of the lattice on the imaginary part
of the non-zero entries ofGl. Each lattice in the ensemble
has transmitter densityγtr = ρrTl , i.e. multiplexing gain
r. We begin by analyzing the performance of the ensemble
of lattices in the receiver, for each channel realization. We
assume a certain channel realization that induces receiverVNR
µrc = ρ

1− r
Kl

−
∑KlTl

i=1
ηi

KlTl , whereη ≥ 0. For each lattice in
the ensemble we get that the channel realization induces a new
lattice in the receiver,H(l)

eff ·x, with densityγrc in accordance
with (3) and subsection IV-B. For lattices with regular lattice
decoding, the error probability is equal among all codewords.
Hence, it is sufficient to analyze the lattice zero codeword
error probability. We define the indication function

IBall(0,2R)(x) =

{
1, ‖x‖ ≤ 2R
0, else

.

In a similar manner to (24) we can state that for each lattice
induced in the receiver,Λrc, the lattice zero codeword error

probability is upper bounded by
∑

x∈Λrc,x 6=0

IBall(0,2Reff )(x) · Pr(‖ñex‖>‖x− ñex‖)

+Pr(‖ñex‖ ≥ Reff) (73)

where R2
eff

2KlTlσ2 = µrc, and ñex is the effective noise in the
KlTl-complex hyperplane whereΛrc resides in. By defining
frc(x) = IBall(0,2Reff )(x) · Pr(‖ñex‖>‖x − ñex‖), we can
rewrite the upper bound on the error probability from (73)

∑

x∈Λrc,x6=0

frc(x) + Pr(‖ñex‖ ≥ Reff). (74)

Note that

γrc

∫

R
2KlTl

frc(x)dx+ Pr(‖ñex‖ ≥ Reff) (75)

is equal to the expression in (27), whereγrc is the density of
the lattice induced in the receiverΛrc, as defined above.

We need to show that there exists a single probability mea-
sure for all channel realizations, that gives average decoding
error probability over the ensemble, which is upper bounded
by (75). Hence, we consider the ensemble of lattices in the
transmitter which is fixed for each channel realization. For
this reason we define

y
′

ex
=

(
H

(l)†
eff ·H(l)

eff

)−1
H

(l)†
eff · y

ex
. (76)

Note that the operation in (76) does not change the error
probability of the lattice when we use regular lattice decoding.
Each lattice in the ensemble has densityγtr = ρrTl . Now we
define the following indication function

Iellipse(H,2R)(x) =

{
1, ‖H · x‖≤ 2R
0, else

,

that is the function is one ifx is within the ellipse and zero
otherwise. Let us denote the error probability of a lattice in
the ensemble for certain channel realizationη by P

(ν)
e (η, ρ),

whereν is a random variable that represents a certain lattice
in the ensemble. Using regular lattice decoding, we get the
following upper bound on the error probability for each lattice
codeword

P (ν)
e (η, ρ) ≤ Pr(‖A · n̂ex‖ ≥ Reff)+∑

x∈Λtr,x6=0

I
ellipse(H

(l)
eff ,2Reff )

(x) · Pr
(
‖A · n̂ex‖

>‖A · (x− n̂ex)‖
)

(77)

where A is a KlTlxKlTl matrix that satisfiesA†A =
H

(l)†
eff H

(l)
eff , Λtr is the lattice from the ensemble that corre-

sponds toν andn̂ex ∼ CN
(
0, (H

(l)†
eff H

(l)
eff )

−1
)
. Note that (77)

is equal to (74), and the corresponding terms in the expressions
are also equal.

Let us definegrc(x) = I
ellipse(H

(l)
eff ,2Reff )

(x) ·Pr
(
‖An̂ex‖>

‖A(x− n̂ex)‖
)
. We get that

γtr

∫

R
2KlTl

grc(x)dx = γrc

∫

R
2KlTl

frc(x)dx. (78)



Next we show that by averaging the upper bound in (77)
over the ensemble of lattices in the transmitter, with the correct
probability measure, we get

Eν{P (ν)
e (η, ρ)} ≤ γrc

∫

R
2KlTl

frc(x)dx+ Pr(‖ñex‖ ≥ Reff).

(79)
We prove (79) by using theMinkowski-Hlawaka-Siegel theo-
rem, [9], presented on Theorem 6.

Theorem 6. On the set of all the lattices of density γ in
R2KlTl , there exists a probability measure ν such that for
any Riemann integrable function f(x) which vanishes outside
some bounded region we have

Eν{
∑

x∈Λ

g(x)} = γ

∫

R
2KlTl

g(x)dx (80)

where Eν{·} represents the expectation with respect to the
measure ν.

Note that considering a2KlTl-real dimensional lattices
enables us to use this theorem. Hence, by choosingγ = γtr,
g(x) = grc(x), and considering (77), (78) we get the desired
upper bound (79). As a result, we can upper bound the
ensemble average decoding error probability for each channel
realization by the upper bound from Theorem 3 (34).

Now we are ready to lower bound the diversity order. Ac-
cording to Theorem 6 there exists a single probability measure
that satisfies (80), for any Riemann integrable function that
vanishes outside some bounded region. Based on (47) and
Lemma 2, we get for the set{ξi,j |

∑N
i=1

∑M
j=1 ξi,j ≤ Tl(Kl−

r); ξi,j ≥ 0} a set of functions,grc(x), which are bounded. As
a result we can upper bound the ensemble average decoding
error probability for this set by the expression from (34). For
the set of events{ξi,j|

∑N
i=1

∑M
j=1 ξi,j > Tl(Kl−r); ξi,j ≥ 0}

we upper bound the ensemble average decoding error proba-
bility by 1. This bounds are the exact same bounds we used
in order to average over the channel realizations on Theorem
4. Hence, by averaging over the channel realizations we get
for the ensemble the same lower bound on the diversity order
as in Theorem 4. This concludes the proof.

APPENDIX F
PROOF OFCOROLLARY 5

The proof of this corollary relies heavily on Theorem 3. We
begin by describing theL ensembles of IC’s and how they
are transmitted. Then we use averaging arguments in order to
show that there exists a singe sequence of IC’s that attains the
optimal DMT.

We begin by considering a sequence ofK0T0-complex
dimensional IC’s with multiplexing gainr = 0, i.e. the
transmitter densityγtr = 1 for any ρ. In a similar manner
to Theorem 3, we first consider an ensemble of finite con-
stellations drawn uniformly withincubeK0T0(b) ⊂ CK0T0 .
Each code-book contains⌊γtrb2K0T0⌋ = ⌊b2K0T0⌋ points,
where each point is drawn uniformly withincubeK0T0(b).
Let us denote a certain finite constellation in the ensemble

by CFC(ρ,K0T0, b) ⊂ cubeK0T0(b). We extend each finite
constellation in the ensemble into an IC in a similar manner
to (32)

IC(ρ,K0T0) = CFC(ρ,K0T0, b) + (b+ b
′

) · Z2K0T0 . (81)

By choosingb =
√

K0T0

πe
ρ

K0T0
2 +2ǫ andb

′

=
√

K0T0

πe
ρ

K0T0
2 +ǫ,

we get a sequence of ensembles of IC’s with multiplexing
gain r = 0. For a certain channel realizationη ≥ 0 we get in
accordance with Theorem 3

Pe(ρ, η,K0T0) ≤ D(K0T0)ρ
−T0K0+

∑K0T0
i=1 ηi (82)

wherePe(ρ, η,K0T0) is the average decoding error proba-
bility of the K0T0-complex dimensional ensemble of IC’s.
From Theorem 4 we know that by transmitting the ensemble
of IC’s over the transmission matrixG0, and averaging over
the channel realizations, we get diversity orderdK0 = MN .
Transmitting overG0 gives us aK0T0-complex dimensional
ensemble of IC’s withinCMT0 .

Next we derive from theK0T0-complex dimensional ensem-
ble of IC’s, anotherKlTl-complex dimensional ensemble of
IC’s, wherel = 1, . . . , L−1. For each IC,IC(ρ,K0T0), in the
ensemble we take the first⌊b2KlTl⌋ points inCFC(ρ,K0T0, b).
We take the components of these points insidecubeKlTl

(b),
and denote this new finite constellation asCFC(ρ,KlTl, b).
Then we replicate these points in a similar manner to (81). In
this case we get a newKlTl-complex dimensional IC

IC(ρ,KlTl) = CFC(ρ,KlTl, b) + (b + b
′

) · Z2KlTl . (83)

By doing it to each IC in the ensemble, we get a new
KlTl-complex dimensional ensemble of IC’s. This new en-
semble is equivalent to ensemble of IC’s generated by draw-
ing uniformly ⌊b2KlTl⌋ points insidecubeKlTl

(b), and then
replicate these points according to(b + b

′

)Z2KlTl . Each IC
sequence in this ensemble has multiplexing gainr = 0.

Since b >

√
KlTl

πe
ρ

KlTl
2 +2ǫ and b

′

>

√
KlTl

πe
ρ

KlTl
2 +ǫ, we

get in accordance with Theorem 3 that for a certain channel
realizationη ≥ 0

Pe(ρ, η,KlTl) ≤ D(KlTl)ρ
−TlKl+

∑KlTl
i=1 ηi (84)

wherePe(ρ, η,KlTl) is the average decoding error probability
of theKlTl-complex dimensional ensemble of IC’s. By trans-
mitting this ensemble of IC’s on the transmission matrixGl,
and averaging over the channel realizations, we get diversity
orderdKl

= (M−l)(N−l)+l(N+M−2·l−1). Transmitting
over Gl gives us aKlTl-complex dimensional ensemble of
IC’s within CMTl .

From the sequential structure of the transmission scheme
we get that omitting the2 · l rightmost columns ofG0

yields Gl. Hence we can derive from theK0T0-complex
dimensional ensemble of IC’s, that attains diversity order
dK0 , anotherKlTl-complex dimensional ensemble of IC’s the
attains diversity orderdKl

, wherel = 1, . . . , L− 1. We attain
it by diluting the points of eachK0T0-complex dimensional
IC in the ensemble in the aforementioned manner, and then



reducing its dimensionality by dropping the2 · l rightmost
columns ofG0.

So far we have shown the connection between the en-
sembles. Now we would like to show that there exists a
certain sequence ofK0T0-complex dimensional IC’s, that
gives us the desired diversity orders by diluting its pointsand
adapting its dimensionality. We denote the average decoding
error probability of theKlTl-complex dimensional ensemble
of IC’s byAl(ρ)ρ

−dKl , wherelimρ→∞
log(Al(ρ))

log(ρ) = 0. We also
define Il,ρ as the event where aKlTl-complex dimensional
IC in the ensemble has average decoding error probability
which is smaller or equal to(L + 1)Al(ρ)ρ

−dKl , where
l = 0, . . . , L − 1. From averaging arguments we know that
Pr(Il,ρ) ≥ L

L+1 . We wish to show that the probability of the
event{I0,ρ ∩ I1,ρ · · · ∩ IL−1,ρ} is bounded away from zero.
From averaging arguments we know that

Pr(I0,ρ ∩ I1,ρ · · · ∩ IL−1,ρ) ≥ 1−
L−1∑

i=0

Pr(Ii,ρ) ≥
1

L+ 1
.

Hence there must exist a sequence ofK0T0-complex dimen-
sional IC’s that attains diversity orderdK0 and has multi-
plexing gain r = 0, from which we can derive for each
l = 1, . . . , L − 1, a sequence ofKlTl-complex dimensional
IC’s with multiplexing gainr = 0 and diversity orderdKl

.
Next we show that theseL sequences attain the optimal

DMT. Consider a sequence ofKlTl-complex dimensional IC’s,
that has multiplexing gainr = 0 and attains diversity order
dKl

. From Corollary 3 we know that scaling this sequence by a
scalarρ−

r
2Kl yields a new sequence of IC’s with multiplexing

gain r and diversity order

dKl
(r) = (M − l)(N − l)− (r − l)(N +M − 2 · l − 1)

where0 ≤ r ≤ Kl andl = 0, . . . , L−1. Each of theL straight
lines dKl

(r), l = 0, . . . , L − 1, coincides with a different
segment out of theL segments of the optimal DMT. This
concludes the proof.
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